const std = @import("../../std.zig"); const tls = std.crypto.tls; const Der = std.crypto.Der; const Client = @This(); const net = std.net; const mem = std.mem; const crypto = std.crypto; const assert = std.debug.assert; const ApplicationCipher = tls.ApplicationCipher; const CipherSuite = tls.CipherSuite; const ContentType = tls.ContentType; const HandshakeType = tls.HandshakeType; const CipherParams = tls.CipherParams; const max_ciphertext_len = tls.max_ciphertext_len; const hkdfExpandLabel = tls.hkdfExpandLabel; const int2 = tls.int2; const int3 = tls.int3; const array = tls.array; const enum_array = tls.enum_array; application_cipher: ApplicationCipher, read_seq: u64, write_seq: u64, /// The size is enough to contain exactly one TLSCiphertext record. partially_read_buffer: [tls.max_ciphertext_record_len]u8, /// The number of partially read bytes inside `partiall_read_buffer`. partially_read_len: u15, eof: bool, /// `host` is only borrowed during this function call. pub fn init(stream: net.Stream, ca_bundle: crypto.CertificateBundle, host: []const u8) !Client { const host_len = @intCast(u16, host.len); var random_buffer: [128]u8 = undefined; crypto.random.bytes(&random_buffer); const hello_rand = random_buffer[0..32].*; const legacy_session_id = random_buffer[32..64].*; const x25519_kp_seed = random_buffer[64..96].*; const secp256r1_kp_seed = random_buffer[96..128].*; const x25519_kp = crypto.dh.X25519.KeyPair.create(x25519_kp_seed) catch |err| switch (err) { // Only possible to happen if the private key is all zeroes. error.IdentityElement => return error.InsufficientEntropy, }; const secp256r1_kp = crypto.sign.ecdsa.EcdsaP256Sha256.KeyPair.create(secp256r1_kp_seed) catch |err| switch (err) { // Only possible to happen if the private key is all zeroes. error.IdentityElement => return error.InsufficientEntropy, }; const extensions_payload = tls.extension(.supported_versions, [_]u8{ 0x02, // byte length of supported versions 0x03, 0x04, // TLS 1.3 }) ++ tls.extension(.signature_algorithms, enum_array(tls.SignatureScheme, &.{ .ecdsa_secp256r1_sha256, .ecdsa_secp384r1_sha384, .ecdsa_secp521r1_sha512, .rsa_pkcs1_sha256, .rsa_pkcs1_sha384, .rsa_pkcs1_sha512, .ed25519, })) ++ tls.extension(.supported_groups, enum_array(tls.NamedGroup, &.{ .secp256r1, .x25519, })) ++ tls.extension( .key_share, array(1, int2(@enumToInt(tls.NamedGroup.x25519)) ++ array(1, x25519_kp.public_key) ++ int2(@enumToInt(tls.NamedGroup.secp256r1)) ++ array(1, secp256r1_kp.public_key.toUncompressedSec1())), ) ++ int2(@enumToInt(tls.ExtensionType.server_name)) ++ int2(host_len + 5) ++ // byte length of this extension payload int2(host_len + 3) ++ // server_name_list byte count [1]u8{0x00} ++ // name_type int2(host_len); const extensions_header = int2(@intCast(u16, extensions_payload.len + host_len)) ++ extensions_payload; const legacy_compression_methods = 0x0100; const client_hello = int2(@enumToInt(tls.ProtocolVersion.tls_1_2)) ++ hello_rand ++ [1]u8{32} ++ legacy_session_id ++ cipher_suites ++ int2(legacy_compression_methods) ++ extensions_header; const out_handshake = [_]u8{@enumToInt(HandshakeType.client_hello)} ++ int3(@intCast(u24, client_hello.len + host_len)) ++ client_hello; const plaintext_header = [_]u8{ @enumToInt(ContentType.handshake), 0x03, 0x01, // legacy_record_version } ++ int2(@intCast(u16, out_handshake.len + host_len)) ++ out_handshake; { var iovecs = [_]std.os.iovec_const{ .{ .iov_base = &plaintext_header, .iov_len = plaintext_header.len, }, .{ .iov_base = host.ptr, .iov_len = host.len, }, }; try stream.writevAll(&iovecs); } const client_hello_bytes1 = plaintext_header[5..]; var cipher_params: CipherParams = undefined; var handshake_buf: [8000]u8 = undefined; var len: usize = 0; var i: usize = i: { const plaintext = handshake_buf[0..5]; len = try stream.readAtLeast(&handshake_buf, plaintext.len); if (len < plaintext.len) return error.EndOfStream; const ct = @intToEnum(ContentType, plaintext[0]); const frag_len = mem.readIntBig(u16, plaintext[3..][0..2]); const end = plaintext.len + frag_len; if (end > handshake_buf.len) return error.TlsRecordOverflow; if (end > len) { len += try stream.readAtLeast(handshake_buf[len..], end - len); if (end > len) return error.EndOfStream; } const frag = handshake_buf[plaintext.len..end]; switch (ct) { .alert => { const level = @intToEnum(tls.AlertLevel, frag[0]); const desc = @intToEnum(tls.AlertDescription, frag[1]); std.debug.print("alert: {s} {s}\n", .{ @tagName(level), @tagName(desc) }); return error.TlsAlert; }, .handshake => { if (frag[0] != @enumToInt(HandshakeType.server_hello)) { return error.TlsUnexpectedMessage; } const length = mem.readIntBig(u24, frag[1..4]); if (4 + length != frag.len) return error.TlsBadLength; var i: usize = 4; const legacy_version = mem.readIntBig(u16, frag[i..][0..2]); i += 2; const random = frag[i..][0..32].*; i += 32; if (mem.eql(u8, &random, &tls.hello_retry_request_sequence)) { @panic("TODO handle HelloRetryRequest"); } const legacy_session_id_echo_len = frag[i]; i += 1; if (legacy_session_id_echo_len != 32) return error.TlsIllegalParameter; const legacy_session_id_echo = frag[i..][0..32]; if (!mem.eql(u8, legacy_session_id_echo, &legacy_session_id)) return error.TlsIllegalParameter; i += 32; const cipher_suite_int = mem.readIntBig(u16, frag[i..][0..2]); i += 2; const cipher_suite_tag = @intToEnum(CipherSuite, cipher_suite_int); const legacy_compression_method = frag[i]; i += 1; _ = legacy_compression_method; const extensions_size = mem.readIntBig(u16, frag[i..][0..2]); i += 2; if (i + extensions_size != frag.len) return error.TlsBadLength; var supported_version: u16 = 0; var shared_key: [32]u8 = undefined; var have_shared_key = false; while (i < frag.len) { const et = mem.readIntBig(u16, frag[i..][0..2]); i += 2; const ext_size = mem.readIntBig(u16, frag[i..][0..2]); i += 2; const next_i = i + ext_size; if (next_i > frag.len) return error.TlsBadLength; switch (et) { @enumToInt(tls.ExtensionType.supported_versions) => { if (supported_version != 0) return error.TlsIllegalParameter; supported_version = mem.readIntBig(u16, frag[i..][0..2]); }, @enumToInt(tls.ExtensionType.key_share) => { if (have_shared_key) return error.TlsIllegalParameter; have_shared_key = true; const named_group = mem.readIntBig(u16, frag[i..][0..2]); i += 2; const key_size = mem.readIntBig(u16, frag[i..][0..2]); i += 2; switch (named_group) { @enumToInt(tls.NamedGroup.x25519) => { if (key_size != 32) return error.TlsBadLength; const server_pub_key = frag[i..][0..32]; shared_key = crypto.dh.X25519.scalarmult( x25519_kp.secret_key, server_pub_key.*, ) catch return error.TlsDecryptFailure; }, @enumToInt(tls.NamedGroup.secp256r1) => { const server_pub_key = frag[i..][0..key_size]; const PublicKey = crypto.sign.ecdsa.EcdsaP256Sha256.PublicKey; const pk = PublicKey.fromSec1(server_pub_key) catch { return error.TlsDecryptFailure; }; const mul = pk.p.mulPublic(secp256r1_kp.secret_key.bytes, .Big) catch { return error.TlsDecryptFailure; }; shared_key = mul.affineCoordinates().x.toBytes(.Big); }, else => { std.debug.print("named group: {x}\n", .{named_group}); return error.TlsIllegalParameter; }, } }, else => { std.debug.print("unexpected extension: {x}\n", .{et}); }, } i = next_i; } if (!have_shared_key) return error.TlsIllegalParameter; const tls_version = if (supported_version == 0) legacy_version else supported_version; switch (tls_version) { @enumToInt(tls.ProtocolVersion.tls_1_3) => {}, else => return error.TlsIllegalParameter, } switch (cipher_suite_tag) { inline .AES_128_GCM_SHA256, .AES_256_GCM_SHA384, .CHACHA20_POLY1305_SHA256, .AEGIS_256_SHA384, .AEGIS_128L_SHA256, => |tag| { const P = std.meta.TagPayloadByName(CipherParams, @tagName(tag)); cipher_params = @unionInit(CipherParams, @tagName(tag), .{ .handshake_secret = undefined, .master_secret = undefined, .client_handshake_key = undefined, .server_handshake_key = undefined, .client_finished_key = undefined, .server_finished_key = undefined, .client_handshake_iv = undefined, .server_handshake_iv = undefined, .transcript_hash = P.Hash.init(.{}), }); const p = &@field(cipher_params, @tagName(tag)); p.transcript_hash.update(client_hello_bytes1); // Client Hello part 1 p.transcript_hash.update(host); // Client Hello part 2 p.transcript_hash.update(frag); // Server Hello const hello_hash = p.transcript_hash.peek(); const zeroes = [1]u8{0} ** P.Hash.digest_length; const early_secret = P.Hkdf.extract(&[1]u8{0}, &zeroes); const empty_hash = tls.emptyHash(P.Hash); const hs_derived_secret = hkdfExpandLabel(P.Hkdf, early_secret, "derived", &empty_hash, P.Hash.digest_length); p.handshake_secret = P.Hkdf.extract(&hs_derived_secret, &shared_key); const ap_derived_secret = hkdfExpandLabel(P.Hkdf, p.handshake_secret, "derived", &empty_hash, P.Hash.digest_length); p.master_secret = P.Hkdf.extract(&ap_derived_secret, &zeroes); const client_secret = hkdfExpandLabel(P.Hkdf, p.handshake_secret, "c hs traffic", &hello_hash, P.Hash.digest_length); const server_secret = hkdfExpandLabel(P.Hkdf, p.handshake_secret, "s hs traffic", &hello_hash, P.Hash.digest_length); p.client_finished_key = hkdfExpandLabel(P.Hkdf, client_secret, "finished", "", P.Hmac.key_length); p.server_finished_key = hkdfExpandLabel(P.Hkdf, server_secret, "finished", "", P.Hmac.key_length); p.client_handshake_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length); p.server_handshake_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length); p.client_handshake_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length); p.server_handshake_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length); //std.debug.print("shared_key: {}\nhello_hash: {}\nearly_secret: {}\nempty_hash: {}\nderived_secret: {}\nhandshake_secret: {}\n client_secret: {}\n server_secret: {}\nclient_handshake_iv: {}\nserver_handshake_iv: {}\n", .{ // std.fmt.fmtSliceHexLower(&shared_key), // std.fmt.fmtSliceHexLower(&hello_hash), // std.fmt.fmtSliceHexLower(&early_secret), // std.fmt.fmtSliceHexLower(&empty_hash), // std.fmt.fmtSliceHexLower(&hs_derived_secret), // std.fmt.fmtSliceHexLower(&p.handshake_secret), // std.fmt.fmtSliceHexLower(&client_secret), // std.fmt.fmtSliceHexLower(&server_secret), // std.fmt.fmtSliceHexLower(&p.client_handshake_iv), // std.fmt.fmtSliceHexLower(&p.server_handshake_iv), //}); }, else => { return error.TlsIllegalParameter; }, } }, else => return error.TlsUnexpectedMessage, } break :i end; }; var read_seq: u64 = 0; while (true) { const end_hdr = i + 5; if (end_hdr > handshake_buf.len) return error.TlsRecordOverflow; if (end_hdr > len) { len += try stream.readAtLeast(handshake_buf[len..], end_hdr - len); if (end_hdr > len) return error.EndOfStream; } const ct = @intToEnum(ContentType, handshake_buf[i]); i += 1; const legacy_version = mem.readIntBig(u16, handshake_buf[i..][0..2]); i += 2; _ = legacy_version; const record_size = mem.readIntBig(u16, handshake_buf[i..][0..2]); i += 2; const end = i + record_size; if (end > handshake_buf.len) return error.TlsRecordOverflow; if (end > len) { len += try stream.readAtLeast(handshake_buf[len..], end - len); if (end > len) return error.EndOfStream; } switch (ct) { .change_cipher_spec => { if (record_size != 1) return error.TlsUnexpectedMessage; if (handshake_buf[i] != 0x01) return error.TlsUnexpectedMessage; }, .application_data => { var cleartext_buf: [8000]u8 = undefined; const cleartext = switch (cipher_params) { inline else => |*p| c: { const P = @TypeOf(p.*); const ciphertext_len = record_size - P.AEAD.tag_length; const ciphertext = handshake_buf[i..][0..ciphertext_len]; i += ciphertext.len; if (ciphertext.len > cleartext_buf.len) return error.TlsRecordOverflow; const cleartext = cleartext_buf[0..ciphertext.len]; const auth_tag = handshake_buf[i..][0..P.AEAD.tag_length].*; const V = @Vector(P.AEAD.nonce_length, u8); const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8); const operand: V = pad ++ @bitCast([8]u8, big(read_seq)); read_seq += 1; const nonce = @as(V, p.server_handshake_iv) ^ operand; const ad = handshake_buf[end_hdr - 5 ..][0..5]; P.AEAD.decrypt(cleartext, ciphertext, auth_tag, ad, nonce, p.server_handshake_key) catch return error.TlsBadRecordMac; break :c cleartext; }, }; const inner_ct = @intToEnum(ContentType, cleartext[cleartext.len - 1]); switch (inner_ct) { .handshake => { var ct_i: usize = 0; while (true) { const handshake_type = cleartext[ct_i]; ct_i += 1; const handshake_len = mem.readIntBig(u24, cleartext[ct_i..][0..3]); ct_i += 3; const next_handshake_i = ct_i + handshake_len; if (next_handshake_i > cleartext.len - 1) return error.TlsBadLength; const wrapped_handshake = cleartext[ct_i - 4 .. next_handshake_i]; const handshake = cleartext[ct_i..next_handshake_i]; switch (handshake_type) { @enumToInt(HandshakeType.encrypted_extensions) => { switch (cipher_params) { inline else => |*p| p.transcript_hash.update(wrapped_handshake), } const total_ext_size = mem.readIntBig(u16, handshake[0..2]); var hs_i: usize = 2; const end_ext_i = 2 + total_ext_size; while (hs_i < end_ext_i) { const et = mem.readIntBig(u16, handshake[hs_i..][0..2]); hs_i += 2; const ext_size = mem.readIntBig(u16, handshake[hs_i..][0..2]); hs_i += 2; const next_ext_i = hs_i + ext_size; switch (et) { @enumToInt(tls.ExtensionType.server_name) => {}, else => { std.debug.print("encrypted extension: {any}\n", .{ et, }); }, } hs_i = next_ext_i; } }, @enumToInt(HandshakeType.certificate) => { switch (cipher_params) { inline else => |*p| p.transcript_hash.update(wrapped_handshake), } var hs_i: u32 = 0; const cert_req_ctx_len = handshake[hs_i]; hs_i += 1; if (cert_req_ctx_len != 0) return error.TlsIllegalParameter; const certs_size = mem.readIntBig(u24, handshake[hs_i..][0..3]); hs_i += 3; const end_certs = hs_i + certs_size; while (hs_i < end_certs) { const cert_size = mem.readIntBig(u24, handshake[hs_i..][0..3]); hs_i += 3; const end_cert = hs_i + cert_size; const certificate = try Der.parseElement(handshake, hs_i); const tbs_certificate = try Der.parseElement(handshake, certificate.start); const version = try Der.parseElement(handshake, tbs_certificate.start); if (@bitCast(u8, version.identifier) != 0xa0 or !mem.eql(u8, handshake[version.start..version.end], "\x02\x01\x02")) { return error.UnsupportedCertificateVersion; } const serial_number = try Der.parseElement(handshake, version.end); // RFC 5280, section 4.1.2.3: // "This field MUST contain the same algorithm identifier as // the signatureAlgorithm field in the sequence Certificate." const signature = try Der.parseElement(handshake, serial_number.end); const issuer_elem = try Der.parseElement(handshake, signature.end); const issuer_bytes = handshake[issuer_elem.start..issuer_elem.end]; if (ca_bundle.find(issuer_bytes)) |ca_cert_i| { const Certificate = crypto.CertificateBundle.Certificate; const subject: Certificate = .{ .buffer = handshake, .index = hs_i, }; const issuer: Certificate = .{ .buffer = ca_bundle.bytes.items, .index = ca_cert_i, }; if (subject.verify(issuer)) |_| { std.debug.print("found a root CA cert matching issuer. verification success!\n", .{}); } else |err| { std.debug.print("found a root CA cert matching issuer. verification failure: {s}\n", .{ @errorName(err), }); } } hs_i = end_cert; const total_ext_size = mem.readIntBig(u16, handshake[hs_i..][0..2]); hs_i += 2; hs_i += total_ext_size; } }, @enumToInt(HandshakeType.certificate_verify) => { switch (cipher_params) { inline else => |*p| p.transcript_hash.update(wrapped_handshake), } std.debug.print("ignoring certificate_verify\n", .{}); }, @enumToInt(HandshakeType.finished) => { // This message is to trick buggy proxies into behaving correctly. const client_change_cipher_spec_msg = [_]u8{ @enumToInt(ContentType.change_cipher_spec), 0x03, 0x03, // legacy protocol version 0x00, 0x01, // length 0x01, }; const app_cipher = switch (cipher_params) { inline else => |*p, tag| c: { const P = @TypeOf(p.*); const finished_digest = p.transcript_hash.peek(); p.transcript_hash.update(wrapped_handshake); const expected_server_verify_data = tls.hmac(P.Hmac, &finished_digest, p.server_finished_key); if (!mem.eql(u8, &expected_server_verify_data, handshake)) return error.TlsDecryptError; const handshake_hash = p.transcript_hash.finalResult(); const verify_data = tls.hmac(P.Hmac, &handshake_hash, p.client_finished_key); const out_cleartext = [_]u8{ @enumToInt(HandshakeType.finished), 0, 0, verify_data.len, // length } ++ verify_data ++ [1]u8{@enumToInt(ContentType.handshake)}; const wrapped_len = out_cleartext.len + P.AEAD.tag_length; var finished_msg = [_]u8{ @enumToInt(ContentType.application_data), 0x03, 0x03, // legacy protocol version 0, wrapped_len, // byte length of encrypted record } ++ ([1]u8{undefined} ** wrapped_len); const ad = finished_msg[0..5]; const ciphertext = finished_msg[5..][0..out_cleartext.len]; const auth_tag = finished_msg[finished_msg.len - P.AEAD.tag_length ..]; const nonce = p.client_handshake_iv; P.AEAD.encrypt(ciphertext, auth_tag, &out_cleartext, ad, nonce, p.client_handshake_key); const both_msgs = client_change_cipher_spec_msg ++ finished_msg; try stream.writeAll(&both_msgs); const client_secret = hkdfExpandLabel(P.Hkdf, p.master_secret, "c ap traffic", &handshake_hash, P.Hash.digest_length); const server_secret = hkdfExpandLabel(P.Hkdf, p.master_secret, "s ap traffic", &handshake_hash, P.Hash.digest_length); //std.debug.print("master_secret={}\nclient_secret={}\nserver_secret={}\n", .{ // std.fmt.fmtSliceHexLower(&p.master_secret), // std.fmt.fmtSliceHexLower(&client_secret), // std.fmt.fmtSliceHexLower(&server_secret), //}); break :c @unionInit(ApplicationCipher, @tagName(tag), .{ .client_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length), .server_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length), .client_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length), .server_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length), }); }, }; std.debug.print("remaining bytes: {d}\n", .{len - end}); return .{ .application_cipher = app_cipher, .read_seq = 0, .write_seq = 0, .partially_read_buffer = undefined, .partially_read_len = 0, .eof = false, }; }, else => { return error.TlsUnexpectedMessage; }, } ct_i = next_handshake_i; if (ct_i >= cleartext.len - 1) break; } }, else => { std.debug.print("inner content type: {any}\n", .{inner_ct}); return error.TlsUnexpectedMessage; }, } }, else => { std.debug.print("content type: {s}\n", .{@tagName(ct)}); return error.TlsUnexpectedMessage; }, } i = end; } return error.TlsHandshakeFailure; } pub fn write(c: *Client, stream: net.Stream, bytes: []const u8) !usize { var ciphertext_buf: [tls.max_ciphertext_record_len * 4]u8 = undefined; // Due to the trailing inner content type byte in the ciphertext, we need // an additional buffer for storing the cleartext into before encrypting. var cleartext_buf: [max_ciphertext_len]u8 = undefined; var iovecs_buf: [5]std.os.iovec_const = undefined; var ciphertext_end: usize = 0; var iovec_end: usize = 0; var bytes_i: usize = 0; // How many bytes are taken up by overhead per record. const overhead_len: usize = switch (c.application_cipher) { inline else => |*p| l: { const P = @TypeOf(p.*); const V = @Vector(P.AEAD.nonce_length, u8); const overhead_len = tls.ciphertext_record_header_len + P.AEAD.tag_length + 1; while (true) { const encrypted_content_len = @intCast(u16, @min( @min(bytes.len - bytes_i, max_ciphertext_len - 1), ciphertext_buf.len - tls.ciphertext_record_header_len - P.AEAD.tag_length - ciphertext_end - 1, )); if (encrypted_content_len == 0) break :l overhead_len; mem.copy(u8, &cleartext_buf, bytes[bytes_i..][0..encrypted_content_len]); cleartext_buf[encrypted_content_len] = @enumToInt(ContentType.application_data); bytes_i += encrypted_content_len; const ciphertext_len = encrypted_content_len + 1; const cleartext = cleartext_buf[0..ciphertext_len]; const record_start = ciphertext_end; const ad = ciphertext_buf[ciphertext_end..][0..5]; ad.* = [_]u8{@enumToInt(ContentType.application_data)} ++ int2(@enumToInt(tls.ProtocolVersion.tls_1_2)) ++ int2(ciphertext_len + P.AEAD.tag_length); ciphertext_end += ad.len; const ciphertext = ciphertext_buf[ciphertext_end..][0..ciphertext_len]; ciphertext_end += ciphertext_len; const auth_tag = ciphertext_buf[ciphertext_end..][0..P.AEAD.tag_length]; ciphertext_end += auth_tag.len; const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8); const operand: V = pad ++ @bitCast([8]u8, big(c.write_seq)); c.write_seq += 1; const nonce = @as(V, p.client_iv) ^ operand; P.AEAD.encrypt(ciphertext, auth_tag, cleartext, ad, nonce, p.client_key); //std.debug.print("seq: {d} nonce: {} client_key: {} client_iv: {} ad: {} auth_tag: {}\nserver_key: {} server_iv: {}\n", .{ // c.write_seq - 1, // std.fmt.fmtSliceHexLower(&nonce), // std.fmt.fmtSliceHexLower(&p.client_key), // std.fmt.fmtSliceHexLower(&p.client_iv), // std.fmt.fmtSliceHexLower(ad), // std.fmt.fmtSliceHexLower(auth_tag), // std.fmt.fmtSliceHexLower(&p.server_key), // std.fmt.fmtSliceHexLower(&p.server_iv), //}); const record = ciphertext_buf[record_start..ciphertext_end]; iovecs_buf[iovec_end] = .{ .iov_base = record.ptr, .iov_len = record.len, }; iovec_end += 1; } }, }; // Ideally we would call writev exactly once here, however, we must ensure // that we don't return with a record partially written. var i: usize = 0; var total_amt: usize = 0; while (true) { var amt = try stream.writev(iovecs_buf[i..iovec_end]); while (amt >= iovecs_buf[i].iov_len) { const encrypted_amt = iovecs_buf[i].iov_len; total_amt += encrypted_amt - overhead_len; amt -= encrypted_amt; i += 1; // Rely on the property that iovecs delineate records, meaning that // if amt equals zero here, we have fortunately found ourselves // with a short read that aligns at the record boundary. if (i >= iovec_end or amt == 0) return total_amt; } iovecs_buf[i].iov_base += amt; iovecs_buf[i].iov_len -= amt; } } pub fn writeAll(c: *Client, stream: net.Stream, bytes: []const u8) !void { var index: usize = 0; while (index < bytes.len) { index += try c.write(stream, bytes[index..]); } } /// Returns number of bytes that have been read, which are now populated inside /// `buffer`. A return value of zero bytes does not necessarily mean end of /// stream. pub fn read(c: *Client, stream: net.Stream, buffer: []u8) !usize { const prev_len = c.partially_read_len; var in_buf: [max_ciphertext_len * 4]u8 = undefined; mem.copy(u8, &in_buf, c.partially_read_buffer[0..prev_len]); // Capacity of output buffer, in records, rounded up. const buf_cap = (buffer.len +| (max_ciphertext_len - 1)) / max_ciphertext_len; const wanted_read_len = buf_cap * (max_ciphertext_len + tls.ciphertext_record_header_len); const ask_slice = in_buf[prev_len..@min(wanted_read_len, in_buf.len)]; const actual_read_len = try stream.read(ask_slice); const frag = in_buf[0 .. prev_len + actual_read_len]; if (frag.len == 0) { c.eof = true; return 0; } var in: usize = 0; var out: usize = 0; while (true) { if (in + tls.ciphertext_record_header_len > frag.len) { return finishRead(c, frag, in, out); } const ct = @intToEnum(ContentType, frag[in]); in += 1; const legacy_version = mem.readIntBig(u16, frag[in..][0..2]); in += 2; _ = legacy_version; const record_size = mem.readIntBig(u16, frag[in..][0..2]); in += 2; const end = in + record_size; if (end > frag.len) { if (record_size > max_ciphertext_len) return error.TlsRecordOverflow; return finishRead(c, frag, in, out); } switch (ct) { .alert => { @panic("TODO handle an alert here"); }, .application_data => { const cleartext_len = switch (c.application_cipher) { inline else => |*p| c: { const P = @TypeOf(p.*); const V = @Vector(P.AEAD.nonce_length, u8); const ad = frag[in - 5 ..][0..5]; const ciphertext_len = record_size - P.AEAD.tag_length; const ciphertext = frag[in..][0..ciphertext_len]; in += ciphertext_len; const auth_tag = frag[in..][0..P.AEAD.tag_length].*; const cleartext = buffer[out..][0..ciphertext_len]; const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8); const operand: V = pad ++ @bitCast([8]u8, big(c.read_seq)); c.read_seq += 1; const nonce: [P.AEAD.nonce_length]u8 = @as(V, p.server_iv) ^ operand; //std.debug.print("seq: {d} nonce: {} server_key: {} server_iv: {}\n", .{ // c.read_seq - 1, // std.fmt.fmtSliceHexLower(&nonce), // std.fmt.fmtSliceHexLower(&p.server_key), // std.fmt.fmtSliceHexLower(&p.server_iv), //}); P.AEAD.decrypt(cleartext, ciphertext, auth_tag, ad, nonce, p.server_key) catch return error.TlsBadRecordMac; break :c cleartext.len; }, }; const inner_ct = @intToEnum(ContentType, buffer[out + cleartext_len - 1]); switch (inner_ct) { .alert => { const level = @intToEnum(tls.AlertLevel, buffer[out]); const desc = @intToEnum(tls.AlertDescription, buffer[out + 1]); if (desc == .close_notify) { c.eof = true; return out; } std.debug.print("alert: {s} {s}\n", .{ @tagName(level), @tagName(desc) }); return error.TlsAlert; }, .handshake => { std.debug.print("the server wants to keep shaking hands\n", .{}); }, .application_data => { out += cleartext_len - 1; }, else => { std.debug.print("inner content type: {d}\n", .{inner_ct}); return error.TlsUnexpectedMessage; }, } }, else => { std.debug.print("unexpected ct: {any}\n", .{ct}); return error.TlsUnexpectedMessage; }, } in = end; } } fn finishRead(c: *Client, frag: []const u8, in: usize, out: usize) usize { const saved_buf = frag[in..]; mem.copy(u8, &c.partially_read_buffer, saved_buf); c.partially_read_len = @intCast(u15, saved_buf.len); return out; } const builtin = @import("builtin"); const native_endian = builtin.cpu.arch.endian(); inline fn big(x: anytype) @TypeOf(x) { return switch (native_endian) { .Big => x, .Little => @byteSwap(x), }; } /// The priority order here is chosen based on what crypto algorithms Zig has /// available in the standard library as well as what is faster. Following are /// a few data points on the relative performance of these algorithms. /// /// Measurement taken with 0.11.0-dev.810+c2f5848fe /// on x86_64-linux Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz: /// zig run .lib/std/crypto/benchmark.zig -OReleaseFast /// aegis-128l: 15382 MiB/s /// aegis-256: 9553 MiB/s /// aes128-gcm: 3721 MiB/s /// aes256-gcm: 3010 MiB/s /// chacha20Poly1305: 597 MiB/s /// /// Measurement taken with 0.11.0-dev.810+c2f5848fe /// on x86_64-linux Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz: /// zig run .lib/std/crypto/benchmark.zig -OReleaseFast -mcpu=baseline /// aegis-128l: 629 MiB/s /// chacha20Poly1305: 529 MiB/s /// aegis-256: 461 MiB/s /// aes128-gcm: 138 MiB/s /// aes256-gcm: 120 MiB/s const cipher_suites = enum_array(tls.CipherSuite, &.{ .AEGIS_128L_SHA256, .AEGIS_256_SHA384, .AES_128_GCM_SHA256, .AES_256_GCM_SHA384, .CHACHA20_POLY1305_SHA256, });