const std = @import("std"); const Int = std.meta.Int; const math = std.math; pub fn floatFromInt(comptime T: type, x: anytype) T { if (x == 0) return 0; // Various constants whose values follow from the type parameters. // Any reasonable optimizer will fold and propagate all of these. const Z = Int(.unsigned, @bitSizeOf(@TypeOf(x))); const uT = Int(.unsigned, @bitSizeOf(T)); const inf = math.inf(T); const float_bits = @bitSizeOf(T); const int_bits = @bitSizeOf(@TypeOf(x)); const exp_bits = math.floatExponentBits(T); const fractional_bits = math.floatFractionalBits(T); const exp_bias = math.maxInt(Int(.unsigned, exp_bits - 1)); const implicit_bit = if (T != f80) @as(uT, 1) << fractional_bits else 0; const max_exp = exp_bias; // Sign const abs_val = @abs(x); const sign_bit = if (x < 0) @as(uT, 1) << (float_bits - 1) else 0; var result: uT = sign_bit; // Compute significand const exp = int_bits - @clz(abs_val) - 1; if (int_bits <= fractional_bits or exp <= fractional_bits) { const shift_amt = fractional_bits - @as(math.Log2Int(uT), @intCast(exp)); // Shift up result to line up with the significand - no rounding required result = @as(uT, @intCast(abs_val)) << shift_amt; result ^= implicit_bit; // Remove implicit integer bit } else { const shift_amt: math.Log2Int(Z) = @intCast(exp - fractional_bits); const exact_tie: bool = @ctz(abs_val) == shift_amt - 1; // Shift down result and remove implicit integer bit result = @as(uT, @intCast((abs_val >> (shift_amt - 1)))) ^ (implicit_bit << 1); // Round result, including round-to-even for exact ties result = ((result + 1) >> 1) & ~@as(uT, @intFromBool(exact_tie)); } // Compute exponent if ((int_bits > max_exp) and (exp > max_exp)) // If exponent too large, overflow to infinity return @bitCast(sign_bit | @as(uT, @bitCast(inf))); result += (@as(uT, exp) + exp_bias) << math.floatMantissaBits(T); // If the result included a carry, we need to restore the explicit integer bit if (T == f80) result |= 1 << fractional_bits; return @bitCast(sign_bit | result); } const endian = @import("builtin").cpu.arch.endian(); inline fn limb(limbs: []const u32, index: usize) u32 { return switch (endian) { .little => limbs[index], .big => limbs[limbs.len - 1 - index], }; } pub inline fn floatFromBigInt(comptime T: type, comptime signedness: std.builtin.Signedness, x: []const u32) T { switch (x.len) { 0 => return 0, inline 1...4 => |limbs_len| return @floatFromInt(@as( @Type(.{ .int = .{ .signedness = signedness, .bits = 32 * limbs_len } }), @bitCast(x[0..limbs_len].*), )), else => {}, } // sign implicit fraction round sticky const I = comptime @Type(.{ .int = .{ .signedness = signedness, .bits = @as(u16, @intFromBool(signedness == .signed)) + 1 + math.floatFractionalBits(T) + 1 + 1, } }); const clrsb = clrsb: { var clsb: usize = 0; const sign_bits: u32 = switch (signedness) { .signed => @bitCast(@as(i32, @bitCast(limb(x, x.len - 1))) >> 31), .unsigned => 0, }; for (0..x.len) |limb_index| { const l = limb(x, x.len - 1 - limb_index) ^ sign_bits; clsb += @clz(l); if (l != 0) break; } break :clrsb clsb - @intFromBool(signedness == .signed); }; const active_bits = 32 * x.len - clrsb; const exponent = active_bits -| @bitSizeOf(I); const exponent_limb = exponent / 32; const sticky = for (0..exponent_limb) |limb_index| { if (limb(x, limb_index) != 0) break true; } else limb(x, exponent_limb) & ((@as(u32, 1) << @truncate(exponent)) - 1) != 0; return math.ldexp(@as(T, @floatFromInt( std.mem.readPackedIntNative(I, std.mem.sliceAsBytes(x), exponent) | @intFromBool(sticky), )), @intCast(exponent)); } test { _ = @import("float_from_int_test.zig"); }