// Ported from musl, which is licensed under the MIT license: // https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT // // https://git.musl-libc.org/cgit/musl/tree/src/math/expf.c // https://git.musl-libc.org/cgit/musl/tree/src/math/exp.c const std = @import("std"); const builtin = @import("builtin"); const arch = builtin.cpu.arch; const math = std.math; const mem = std.mem; const expect = std.testing.expect; const expectEqual = std.testing.expectEqual; const common = @import("common.zig"); pub const panic = common.panic; comptime { @export(&__exph, .{ .name = "__exph", .linkage = common.linkage, .visibility = common.visibility }); @export(&expf, .{ .name = "expf", .linkage = common.linkage, .visibility = common.visibility }); @export(&exp, .{ .name = "exp", .linkage = common.linkage, .visibility = common.visibility }); @export(&__expx, .{ .name = "__expx", .linkage = common.linkage, .visibility = common.visibility }); if (common.want_ppc_abi) { @export(&expq, .{ .name = "expf128", .linkage = common.linkage, .visibility = common.visibility }); } @export(&expq, .{ .name = "expq", .linkage = common.linkage, .visibility = common.visibility }); @export(&expl, .{ .name = "expl", .linkage = common.linkage, .visibility = common.visibility }); } pub fn __exph(a: f16) callconv(.c) f16 { // TODO: more efficient implementation return @floatCast(expf(a)); } pub fn expf(x_: f32) callconv(.c) f32 { const half = [_]f32{ 0.5, -0.5 }; const ln2hi = 6.9314575195e-1; const ln2lo = 1.4286067653e-6; const invln2 = 1.4426950216e+0; const P1 = 1.6666625440e-1; const P2 = -2.7667332906e-3; var x = x_; var hx: u32 = @bitCast(x); const sign: i32 = @intCast(hx >> 31); hx &= 0x7FFFFFFF; if (math.isNan(x)) { return x; } // |x| >= -87.33655 or nan if (hx >= 0x42AEAC50) { // nan if (hx > 0x7F800000) { return x; } // x >= 88.722839 if (hx >= 0x42b17218 and sign == 0) { return x * 0x1.0p127; } if (sign != 0) { if (common.want_float_exceptions) mem.doNotOptimizeAway(-0x1.0p-149 / x); // overflow // x <= -103.972084 if (hx >= 0x42CFF1B5) { return 0; } } } var k: i32 = undefined; var hi: f32 = undefined; var lo: f32 = undefined; // |x| > 0.5 * ln2 if (hx > 0x3EB17218) { // |x| > 1.5 * ln2 if (hx > 0x3F851592) { k = @intFromFloat(invln2 * x + half[@intCast(sign)]); } else { k = 1 - sign - sign; } const fk: f32 = @floatFromInt(k); hi = x - fk * ln2hi; lo = fk * ln2lo; x = hi - lo; } // |x| > 2^(-14) else if (hx > 0x39000000) { k = 0; hi = x; lo = 0; } else { if (common.want_float_exceptions) mem.doNotOptimizeAway(0x1.0p127 + x); // inexact return 1 + x; } const xx = x * x; const c = x - xx * (P1 + xx * P2); const y = 1 + (x * c / (2 - c) - lo + hi); if (k == 0) { return y; } else { return math.scalbn(y, k); } } pub fn exp(x_: f64) callconv(.c) f64 { const half = [_]f64{ 0.5, -0.5 }; const ln2hi: f64 = 6.93147180369123816490e-01; const ln2lo: f64 = 1.90821492927058770002e-10; const invln2: f64 = 1.44269504088896338700e+00; const P1: f64 = 1.66666666666666019037e-01; const P2: f64 = -2.77777777770155933842e-03; const P3: f64 = 6.61375632143793436117e-05; const P4: f64 = -1.65339022054652515390e-06; const P5: f64 = 4.13813679705723846039e-08; var x = x_; const ux: u64 = @bitCast(x); var hx = ux >> 32; const sign: i32 = @intCast(hx >> 31); hx &= 0x7FFFFFFF; if (math.isNan(x)) { return x; } // |x| >= 708.39 or nan if (hx >= 0x4086232B) { // nan if (hx > 0x7FF00000) { return x; } if (x > 709.782712893383973096) { // overflow if x != inf if (!math.isInf(x)) { math.raiseOverflow(); } return math.inf(f64); } if (x < -708.39641853226410622) { // underflow if x != -inf // if (common.want_float_exceptions) mem.doNotOptimizeAway(@as(f32, -0x1.0p-149 / x)); if (x < -745.13321910194110842) { return 0; } } } // argument reduction var k: i32 = undefined; var hi: f64 = undefined; var lo: f64 = undefined; // |x| > 0.5 * ln2 if (hx > 0x3FD62E42) { // |x| >= 1.5 * ln2 if (hx > 0x3FF0A2B2) { k = @intFromFloat(invln2 * x + half[@intCast(sign)]); } else { k = 1 - sign - sign; } const dk: f64 = @floatFromInt(k); hi = x - dk * ln2hi; lo = dk * ln2lo; x = hi - lo; } // |x| > 2^(-28) else if (hx > 0x3E300000) { k = 0; hi = x; lo = 0; } else { // inexact if x != 0 // if (common.want_float_exceptions) mem.doNotOptimizeAway(0x1.0p1023 + x); return 1 + x; } const xx = x * x; const c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5)))); const y = 1 + (x * c / (2 - c) - lo + hi); if (k == 0) { return y; } else { return math.scalbn(y, k); } } pub fn __expx(a: f80) callconv(.c) f80 { // TODO: more efficient implementation return @floatCast(expq(a)); } pub fn expq(a: f128) callconv(.c) f128 { // TODO: more correct implementation return exp(@floatCast(a)); } pub fn expl(x: c_longdouble) callconv(.c) c_longdouble { switch (@typeInfo(c_longdouble).float.bits) { 16 => return __exph(x), 32 => return expf(x), 64 => return exp(x), 80 => return __expx(x), 128 => return expq(x), else => @compileError("unreachable"), } } test "expf() special" { try expectEqual(expf(0.0), 1.0); try expectEqual(expf(-0.0), 1.0); try expectEqual(expf(1.0), math.e); try expectEqual(expf(math.ln2), 2.0); try expectEqual(expf(math.inf(f32)), math.inf(f32)); try expect(math.isPositiveZero(expf(-math.inf(f32)))); try expect(math.isNan(expf(math.nan(f32)))); try expect(math.isNan(expf(math.snan(f32)))); } test "expf() sanity" { try expectEqual(expf(-0x1.0223a0p+3), 0x1.490320p-12); try expectEqual(expf(0x1.161868p+2), 0x1.34712ap+6); try expectEqual(expf(-0x1.0c34b4p+3), 0x1.e06b1ap-13); try expectEqual(expf(-0x1.a206f0p+2), 0x1.7dd484p-10); try expectEqual(expf(0x1.288bbcp+3), 0x1.4abc80p+13); try expectEqual(expf(0x1.52efd0p-1), 0x1.f04a9cp+0); try expectEqual(expf(-0x1.a05cc8p-2), 0x1.54f1e0p-1); try expectEqual(expf(0x1.1f9efap-1), 0x1.c0f628p+0); try expectEqual(expf(0x1.8c5db0p-1), 0x1.1599b2p+1); try expectEqual(expf(-0x1.5b86eap-1), 0x1.03b572p-1); try expectEqual(expf(-0x1.57f25cp+2), 0x1.2fbea2p-8); try expectEqual(expf(0x1.c7d310p+3), 0x1.76eefp+20); try expectEqual(expf(0x1.19be70p+4), 0x1.52d3dep+25); try expectEqual(expf(-0x1.ab6d70p+3), 0x1.a88adep-20); try expectEqual(expf(-0x1.5ac18ep+2), 0x1.22b328p-8); try expectEqual(expf(-0x1.925982p-1), 0x1.d2acc0p-2); try expectEqual(expf(0x1.7221cep+3), 0x1.9c2ceap+16); try expectEqual(expf(0x1.11a0d4p+4), 0x1.980ee6p+24); try expectEqual(expf(-0x1.ae41a2p+1), 0x1.1c28d0p-5); try expectEqual(expf(-0x1.329154p+4), 0x1.47ef94p-28); } test "expf() boundary" { try expectEqual(expf(0x1.62e42ep+6), 0x1.ffff08p+127); // The last value before the result gets infinite try expectEqual(expf(0x1.62e430p+6), math.inf(f32)); // The first value that gives inf try expectEqual(expf(0x1.fffffep+127), math.inf(f32)); // Max input value try expectEqual(expf(0x1p-149), 1.0); // Min positive input value try expectEqual(expf(-0x1p-149), 1.0); // Min negative input value try expectEqual(expf(0x1p-126), 1.0); // First positive subnormal input try expectEqual(expf(-0x1p-126), 1.0); // First negative subnormal input try expectEqual(expf(-0x1.9fe368p+6), 0x1p-149); // The last value before the result flushes to zero try expectEqual(expf(-0x1.9fe36ap+6), 0.0); // The first value at which the result flushes to zero try expectEqual(expf(-0x1.5d589ep+6), 0x1.00004cp-126); // The last value before the result flushes to subnormal try expectEqual(expf(-0x1.5d58a0p+6), 0x1.ffff98p-127); // The first value for which the result flushes to subnormal } test "exp() special" { try expectEqual(exp(0.0), 1.0); try expectEqual(exp(-0.0), 1.0); // TODO: Accuracy error - off in the last bit in 64-bit, disagreeing with GCC // try expectEqual(exp(1.0), math.e); try expectEqual(exp(math.ln2), 2.0); try expectEqual(exp(math.inf(f64)), math.inf(f64)); try expect(math.isPositiveZero(exp(-math.inf(f64)))); try expect(math.isNan(exp(math.nan(f64)))); try expect(math.isNan(exp(math.snan(f64)))); } test "exp() sanity" { try expectEqual(exp(-0x1.02239f3c6a8f1p+3), 0x1.490327ea61235p-12); try expectEqual(exp(0x1.161868e18bc67p+2), 0x1.34712ed238c04p+6); try expectEqual(exp(-0x1.0c34b3e01e6e7p+3), 0x1.e06b1b6c18e64p-13); try expectEqual(exp(-0x1.a206f0a19dcc4p+2), 0x1.7dd47f810e68cp-10); try expectEqual(exp(0x1.288bbb0d6a1e6p+3), 0x1.4abc77496e07ep+13); try expectEqual(exp(0x1.52efd0cd80497p-1), 0x1.f04a9c1080500p+0); try expectEqual(exp(-0x1.a05cc754481d1p-2), 0x1.54f1e0fd3ea0dp-1); try expectEqual(exp(0x1.1f9ef934745cbp-1), 0x1.c0f6266a6a547p+0); try expectEqual(exp(0x1.8c5db097f7442p-1), 0x1.1599b1d4a25fbp+1); try expectEqual(exp(-0x1.5b86ea8118a0ep-1), 0x1.03b5728a00229p-1); try expectEqual(exp(-0x1.57f25b2b5006dp+2), 0x1.2fbea6a01cab9p-8); try expectEqual(exp(0x1.c7d30fb825911p+3), 0x1.76eeed45a0634p+20); try expectEqual(exp(0x1.19be709de7505p+4), 0x1.52d3eb7be6844p+25); try expectEqual(exp(-0x1.ab6d6fba96889p+3), 0x1.a88ae12f985d6p-20); try expectEqual(exp(-0x1.5ac18e27084ddp+2), 0x1.22b327da9cca6p-8); try expectEqual(exp(-0x1.925981b093c41p-1), 0x1.d2acc046b55f7p-2); try expectEqual(exp(0x1.7221cd18455f5p+3), 0x1.9c2cde8699cfbp+16); try expectEqual(exp(0x1.11a0d4a51b239p+4), 0x1.980ef612ff182p+24); try expectEqual(exp(-0x1.ae41a1079de4dp+1), 0x1.1c28d16bb3222p-5); try expectEqual(exp(-0x1.329153103b871p+4), 0x1.47efa6ddd0d22p-28); } test "exp() boundary" { try expectEqual(exp(0x1.62e42fefa39efp+9), 0x1.fffffffffff2ap+1023); // The last value before the result gets infinite try expectEqual(exp(0x1.62e42fefa39f0p+9), math.inf(f64)); // The first value that gives inf try expectEqual(exp(0x1.fffffffffffffp+1023), math.inf(f64)); // Max input value try expectEqual(exp(0x1p-1074), 1.0); // Min positive input value try expectEqual(exp(-0x1p-1074), 1.0); // Min negative input value try expectEqual(exp(0x1p-1022), 1.0); // First positive subnormal input try expectEqual(exp(-0x1p-1022), 1.0); // First negative subnormal input try expectEqual(exp(-0x1.74910d52d3051p+9), 0x1p-1074); // The last value before the result flushes to zero try expectEqual(exp(-0x1.74910d52d3052p+9), 0.0); // The first value at which the result flushes to zero try expectEqual(exp(-0x1.6232bdd7abcd2p+9), 0x1.000000000007cp-1022); // The last value before the result flushes to subnormal try expectEqual(exp(-0x1.6232bdd7abcd3p+9), 0x1.ffffffffffcf8p-1023); // The first value for which the result flushes to subnormal }