const std = @import("std"); const Allocator = std.mem.Allocator; const Target = std.Target; const Signedness = std.builtin.Signedness; const assert = std.debug.assert; const log = std.log.scoped(.codegen); const Zcu = @import("../../Zcu.zig"); const Type = @import("../../Type.zig"); const Value = @import("../../Value.zig"); const Air = @import("../../Air.zig"); const InternPool = @import("../../InternPool.zig"); const Section = @import("Section.zig"); const Assembler = @import("Assembler.zig"); const spec = @import("spec.zig"); const Opcode = spec.Opcode; const Word = spec.Word; const Id = spec.Id; const IdRange = spec.IdRange; const StorageClass = spec.StorageClass; const Module = @import("Module.zig"); const Decl = Module.Decl; const Repr = Module.Repr; const InternMap = Module.InternMap; const PtrTypeMap = Module.PtrTypeMap; const CodeGen = @This(); pub fn legalizeFeatures(_: *const std.Target) *const Air.Legalize.Features { return comptime &.initMany(&.{ .expand_intcast_safe, .expand_int_from_float_safe, .expand_int_from_float_optimized_safe, .expand_add_safe, .expand_sub_safe, .expand_mul_safe, }); } pub const zig_call_abi_ver = 3; const ControlFlow = union(enum) { const Structured = struct { /// This type indicates the way that a block is terminated. The /// state of a particular block is used to track how a jump from /// inside the block must reach the outside. const Block = union(enum) { const Incoming = struct { src_label: Id, /// Instruction that returns an u32 value of the /// `Air.Inst.Index` that control flow should jump to. next_block: Id, }; const SelectionMerge = struct { /// Incoming block from the `then` label. /// Note that hte incoming block from the `else` label is /// either given by the next element in the stack. incoming: Incoming, /// The label id of the cond_br's merge block. /// For the top-most element in the stack, this /// value is undefined. merge_block: Id, }; /// For a `selection` type block, we cannot use early exits, and we /// must generate a 'merge ladder' of OpSelection instructions. To that end, /// we keep a stack of the merges that still must be closed at the end of /// a block. /// /// This entire structure basically just resembles a tree like /// a x /// \ / /// b o merge /// \ / /// c o merge /// \ / /// o merge /// / /// o jump to next block selection: struct { /// In order to know which merges we still need to do, we need to keep /// a stack of those. merge_stack: std.ArrayListUnmanaged(SelectionMerge) = .empty, }, /// For a `loop` type block, we can early-exit the block by /// jumping to the loop exit node, and we don't need to generate /// an entire stack of merges. loop: struct { /// The next block to jump to can be determined from any number /// of conditions that jump to the loop exit. merges: std.ArrayListUnmanaged(Incoming) = .empty, /// The label id of the loop's merge block. merge_block: Id, }, fn deinit(block: *Structured.Block, gpa: Allocator) void { switch (block.*) { .selection => |*merge| merge.merge_stack.deinit(gpa), .loop => |*merge| merge.merges.deinit(gpa), } block.* = undefined; } }; /// This determines how exits from the current block must be handled. block_stack: std.ArrayListUnmanaged(*Structured.Block) = .empty, block_results: std.AutoHashMapUnmanaged(Air.Inst.Index, Id) = .empty, }; const Unstructured = struct { const Incoming = struct { src_label: Id, break_value_id: Id, }; const Block = struct { label: ?Id = null, incoming_blocks: std.ArrayListUnmanaged(Incoming) = .empty, }; /// We need to keep track of result ids for block labels, as well as the 'incoming' /// blocks for a block. blocks: std.AutoHashMapUnmanaged(Air.Inst.Index, *Block) = .empty, }; structured: Structured, unstructured: Unstructured, pub fn deinit(cg: *ControlFlow, gpa: Allocator) void { switch (cg.*) { .structured => |*cf| { cf.block_stack.deinit(gpa); cf.block_results.deinit(gpa); }, .unstructured => |*cf| { cf.blocks.deinit(gpa); }, } cg.* = undefined; } }; pt: Zcu.PerThread, air: Air, liveness: Air.Liveness, owner_nav: InternPool.Nav.Index, module: *Module, control_flow: ControlFlow, base_line: u32, block_label: Id = .none, next_arg_index: u32 = 0, args: std.ArrayListUnmanaged(Id) = .empty, inst_results: std.AutoHashMapUnmanaged(Air.Inst.Index, Id) = .empty, id_scratch: std.ArrayListUnmanaged(Id) = .empty, prologue: Section = .{}, body: Section = .{}, error_msg: ?*Zcu.ErrorMsg = null, pub fn deinit(cg: *CodeGen) void { const gpa = cg.module.gpa; cg.control_flow.deinit(gpa); cg.args.deinit(gpa); cg.inst_results.deinit(gpa); cg.id_scratch.deinit(gpa); cg.prologue.deinit(gpa); cg.body.deinit(gpa); } const Error = error{ CodegenFail, OutOfMemory }; pub fn genNav(cg: *CodeGen, do_codegen: bool) Error!void { const gpa = cg.module.gpa; const zcu = cg.module.zcu; const ip = &zcu.intern_pool; const target = zcu.getTarget(); const nav = ip.getNav(cg.owner_nav); const val = zcu.navValue(cg.owner_nav); const ty = val.typeOf(zcu); if (!do_codegen and !ty.hasRuntimeBits(zcu)) return; const spv_decl_index = try cg.module.resolveNav(ip, cg.owner_nav); const decl = cg.module.declPtr(spv_decl_index); const result_id = decl.result_id; decl.begin_dep = cg.module.decl_deps.items.len; switch (decl.kind) { .func => { const fn_info = zcu.typeToFunc(ty).?; const return_ty_id = try cg.resolveFnReturnType(.fromInterned(fn_info.return_type)); const is_test = zcu.test_functions.contains(cg.owner_nav); const func_result_id = if (is_test) cg.module.allocId() else result_id; const prototype_ty_id = try cg.resolveType(ty, .direct); try cg.prologue.emit(gpa, .OpFunction, .{ .id_result_type = return_ty_id, .id_result = func_result_id, .function_type = prototype_ty_id, // Note: the backend will never be asked to generate an inline function // (this is handled in sema), so we don't need to set function_control here. .function_control = .{}, }); comptime assert(zig_call_abi_ver == 3); try cg.args.ensureUnusedCapacity(gpa, fn_info.param_types.len); for (fn_info.param_types.get(ip)) |param_ty_index| { const param_ty: Type = .fromInterned(param_ty_index); if (!param_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue; const param_type_id = try cg.resolveType(param_ty, .direct); const arg_result_id = cg.module.allocId(); try cg.prologue.emit(gpa, .OpFunctionParameter, .{ .id_result_type = param_type_id, .id_result = arg_result_id, }); cg.args.appendAssumeCapacity(arg_result_id); } // TODO: This could probably be done in a better way... const root_block_id = cg.module.allocId(); // The root block of a function declaration should appear before OpVariable instructions, // so it is generated into the function's prologue. try cg.prologue.emit(gpa, .OpLabel, .{ .id_result = root_block_id, }); cg.block_label = root_block_id; const main_body = cg.air.getMainBody(); switch (cg.control_flow) { .structured => { _ = try cg.genStructuredBody(.selection, main_body); // We always expect paths to here to end, but we still need the block // to act as a dummy merge block. try cg.body.emit(gpa, .OpUnreachable, {}); }, .unstructured => { try cg.genBody(main_body); }, } try cg.body.emit(gpa, .OpFunctionEnd, {}); // Append the actual code into the functions section. try cg.module.sections.functions.append(gpa, cg.prologue); try cg.module.sections.functions.append(gpa, cg.body); // Temporarily generate a test kernel declaration if this is a test function. if (is_test) { try cg.generateTestEntryPoint(nav.fqn.toSlice(ip), spv_decl_index, func_result_id); } try cg.module.debugName(func_result_id, nav.fqn.toSlice(ip)); }, .global => { assert(ip.indexToKey(val.toIntern()) == .@"extern"); const storage_class = cg.module.storageClass(nav.getAddrspace()); assert(storage_class != .generic); // These should be instance globals const ty_id = try cg.resolveType(ty, .indirect); const ptr_ty_id = try cg.module.ptrType(ty_id, storage_class); try cg.module.sections.globals.emit(gpa, .OpVariable, .{ .id_result_type = ptr_ty_id, .id_result = result_id, .storage_class = storage_class, }); switch (target.os.tag) { .vulkan, .opengl => { if (ty.zigTypeTag(zcu) == .@"struct") { switch (storage_class) { .uniform, .push_constant => try cg.module.decorate(ty_id, .block), else => {}, } } switch (ip.indexToKey(ty.toIntern())) { .func_type, .opaque_type => {}, else => { try cg.module.decorate(ptr_ty_id, .{ .array_stride = .{ .array_stride = @intCast(ty.abiSize(zcu)) }, }); }, } }, else => {}, } if (std.meta.stringToEnum(spec.BuiltIn, nav.fqn.toSlice(ip))) |builtin| { try cg.module.decorate(result_id, .{ .built_in = .{ .built_in = builtin } }); } try cg.module.debugName(result_id, nav.fqn.toSlice(ip)); }, .invocation_global => { const maybe_init_val: ?Value = switch (ip.indexToKey(val.toIntern())) { .func => unreachable, .variable => |variable| .fromInterned(variable.init), .@"extern" => null, else => val, }; const ty_id = try cg.resolveType(ty, .indirect); const ptr_ty_id = try cg.module.ptrType(ty_id, .function); if (maybe_init_val) |init_val| { // TODO: Combine with resolveAnonDecl? const void_ty_id = try cg.resolveType(.void, .direct); const initializer_proto_ty_id = try cg.module.functionType(void_ty_id, &.{}); const initializer_id = cg.module.allocId(); try cg.prologue.emit(gpa, .OpFunction, .{ .id_result_type = try cg.resolveType(.void, .direct), .id_result = initializer_id, .function_control = .{}, .function_type = initializer_proto_ty_id, }); const root_block_id = cg.module.allocId(); try cg.prologue.emit(gpa, .OpLabel, .{ .id_result = root_block_id, }); cg.block_label = root_block_id; const val_id = try cg.constant(ty, init_val, .indirect); try cg.body.emit(gpa, .OpStore, .{ .pointer = result_id, .object = val_id, }); try cg.body.emit(gpa, .OpReturn, {}); try cg.body.emit(gpa, .OpFunctionEnd, {}); try cg.module.sections.functions.append(gpa, cg.prologue); try cg.module.sections.functions.append(gpa, cg.body); try cg.module.debugNameFmt(initializer_id, "initializer of {f}", .{nav.fqn.fmt(ip)}); try cg.module.sections.globals.emit(gpa, .OpExtInst, .{ .id_result_type = ptr_ty_id, .id_result = result_id, .set = try cg.module.importInstructionSet(.zig), .instruction = .{ .inst = @intFromEnum(spec.Zig.InvocationGlobal) }, .id_ref_4 = &.{initializer_id}, }); } else { try cg.module.sections.globals.emit(gpa, .OpExtInst, .{ .id_result_type = ptr_ty_id, .id_result = result_id, .set = try cg.module.importInstructionSet(.zig), .instruction = .{ .inst = @intFromEnum(spec.Zig.InvocationGlobal) }, .id_ref_4 = &.{}, }); } }, } cg.module.declPtr(spv_decl_index).end_dep = cg.module.decl_deps.items.len; } pub fn fail(cg: *CodeGen, comptime format: []const u8, args: anytype) Error { @branchHint(.cold); const zcu = cg.module.zcu; const src_loc = zcu.navSrcLoc(cg.owner_nav); assert(cg.error_msg == null); cg.error_msg = try Zcu.ErrorMsg.create(zcu.gpa, src_loc, format, args); return error.CodegenFail; } pub fn todo(cg: *CodeGen, comptime format: []const u8, args: anytype) Error { return cg.fail("TODO (SPIR-V): " ++ format, args); } /// This imports the "default" extended instruction set for the target /// For OpenCL, OpenCL.std.100. For Vulkan and OpenGL, GLSL.std.450. fn importExtendedSet(cg: *CodeGen) !Id { const target = cg.module.zcu.getTarget(); return switch (target.os.tag) { .opencl, .amdhsa => try cg.module.importInstructionSet(.@"OpenCL.std"), .vulkan, .opengl => try cg.module.importInstructionSet(.@"GLSL.std.450"), else => unreachable, }; } /// Fetch the result-id for a previously generated instruction or constant. fn resolve(cg: *CodeGen, inst: Air.Inst.Ref) !Id { const pt = cg.pt; const zcu = cg.module.zcu; const ip = &zcu.intern_pool; if (try cg.air.value(inst, pt)) |val| { const ty = cg.typeOf(inst); if (ty.zigTypeTag(zcu) == .@"fn") { const fn_nav = switch (zcu.intern_pool.indexToKey(val.ip_index)) { .@"extern" => |@"extern"| @"extern".owner_nav, .func => |func| func.owner_nav, else => unreachable, }; const spv_decl_index = try cg.module.resolveNav(ip, fn_nav); try cg.module.decl_deps.append(cg.module.gpa, spv_decl_index); return cg.module.declPtr(spv_decl_index).result_id; } return try cg.constant(ty, val, .direct); } const index = inst.toIndex().?; return cg.inst_results.get(index).?; // Assertion means instruction does not dominate usage. } fn resolveUav(cg: *CodeGen, val: InternPool.Index) !Id { const gpa = cg.module.gpa; // TODO: This cannot be a function at this point, but it should probably be handled anyway. const zcu = cg.module.zcu; const ty: Type = .fromInterned(zcu.intern_pool.typeOf(val)); const ty_id = try cg.resolveType(ty, .indirect); const spv_decl_index = blk: { const entry = try cg.module.uav_link.getOrPut(gpa, .{ val, .function }); if (entry.found_existing) { try cg.addFunctionDep(entry.value_ptr.*, .function); return cg.module.declPtr(entry.value_ptr.*).result_id; } const spv_decl_index = try cg.module.allocDecl(.invocation_global); try cg.addFunctionDep(spv_decl_index, .function); entry.value_ptr.* = spv_decl_index; break :blk spv_decl_index; }; // TODO: At some point we will be able to generate this all constant here, but then all of // constant() will need to be implemented such that it doesn't generate any at-runtime code. // NOTE: Because this is a global, we really only want to initialize it once. Therefore the // constant lowering of this value will need to be deferred to an initializer similar to // other globals. const result_id = cg.module.declPtr(spv_decl_index).result_id; { // Save the current state so that we can temporarily generate into a different function. // TODO: This should probably be made a little more robust. const func_prologue = cg.prologue; const func_body = cg.body; const block_label = cg.block_label; defer { cg.prologue = func_prologue; cg.body = func_body; cg.block_label = block_label; } cg.prologue = .{}; cg.body = .{}; defer { cg.prologue.deinit(gpa); cg.body.deinit(gpa); } const void_ty_id = try cg.resolveType(.void, .direct); const initializer_proto_ty_id = try cg.module.functionType(void_ty_id, &.{}); const initializer_id = cg.module.allocId(); try cg.prologue.emit(gpa, .OpFunction, .{ .id_result_type = try cg.resolveType(.void, .direct), .id_result = initializer_id, .function_control = .{}, .function_type = initializer_proto_ty_id, }); const root_block_id = cg.module.allocId(); try cg.prologue.emit(gpa, .OpLabel, .{ .id_result = root_block_id, }); cg.block_label = root_block_id; const val_id = try cg.constant(ty, .fromInterned(val), .indirect); try cg.body.emit(gpa, .OpStore, .{ .pointer = result_id, .object = val_id, }); try cg.body.emit(gpa, .OpReturn, {}); try cg.body.emit(gpa, .OpFunctionEnd, {}); try cg.module.sections.functions.append(gpa, cg.prologue); try cg.module.sections.functions.append(gpa, cg.body); try cg.module.debugNameFmt(initializer_id, "initializer of __anon_{d}", .{@intFromEnum(val)}); const fn_decl_ptr_ty_id = try cg.module.ptrType(ty_id, .function); try cg.module.sections.globals.emit(gpa, .OpExtInst, .{ .id_result_type = fn_decl_ptr_ty_id, .id_result = result_id, .set = try cg.module.importInstructionSet(.zig), .instruction = .{ .inst = @intFromEnum(spec.Zig.InvocationGlobal) }, .id_ref_4 = &.{initializer_id}, }); } return result_id; } fn addFunctionDep(cg: *CodeGen, decl_index: Module.Decl.Index, storage_class: StorageClass) !void { const gpa = cg.module.gpa; const target = cg.module.zcu.getTarget(); if (target.cpu.has(.spirv, .v1_4)) { try cg.module.decl_deps.append(gpa, decl_index); } else { // Before version 1.4, the interface’s storage classes are limited to the Input and Output if (storage_class == .input or storage_class == .output) { try cg.module.decl_deps.append(gpa, decl_index); } } } /// Start a new SPIR-V block, Emits the label of the new block, and stores which /// block we are currently generating. /// Note that there is no such thing as nested blocks like in ZIR or AIR, so we don't need to /// keep track of the previous block. fn beginSpvBlock(cg: *CodeGen, label: Id) !void { try cg.body.emit(cg.module.gpa, .OpLabel, .{ .id_result = label }); cg.block_label = label; } /// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if /// the Int64 capability is enabled). /// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits). /// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there /// is no way of knowing whether those are actually supported. /// TODO: Maybe this should be cached? fn largestSupportedIntBits(cg: *CodeGen) u16 { const target = cg.module.zcu.getTarget(); if (target.cpu.has(.spirv, .int64) or target.cpu.arch == .spirv64) { return 64; } return 32; } const ArithmeticTypeInfo = struct { const Class = enum { bool, /// A regular, **native**, integer. /// This is only returned when the backend supports this int as a native type (when /// the relevant capability is enabled). integer, /// A regular float. These are all required to be natively supported. Floating points /// for which the relevant capability is not enabled are not emulated. float, /// An integer of a 'strange' size (which' bit size is not the same as its backing /// type. **Note**: this may **also** include power-of-2 integers for which the /// relevant capability is not enabled), but still within the limits of the largest /// natively supported integer type. strange_integer, /// An integer with more bits than the largest natively supported integer type. composite_integer, }; /// A classification of the inner type. /// These scenarios will all have to be handled slightly different. class: Class, /// The number of bits in the inner type. /// This is the actual number of bits of the type, not the size of the backing integer. bits: u16, /// The number of bits required to store the type. /// For `integer` and `float`, this is equal to `bits`. /// For `strange_integer` and `bool` this is the size of the backing integer. /// For `composite_integer` this is the elements count. backing_bits: u16, /// Null if this type is a scalar, or the length of the vector otherwise. vector_len: ?u32, /// Whether the inner type is signed. Only relevant for integers. signedness: std.builtin.Signedness, }; fn arithmeticTypeInfo(cg: *CodeGen, ty: Type) ArithmeticTypeInfo { const zcu = cg.module.zcu; const target = cg.module.zcu.getTarget(); var scalar_ty = ty.scalarType(zcu); if (scalar_ty.zigTypeTag(zcu) == .@"enum") { scalar_ty = scalar_ty.intTagType(zcu); } const vector_len = if (ty.isVector(zcu)) ty.vectorLen(zcu) else null; return switch (scalar_ty.zigTypeTag(zcu)) { .bool => .{ .bits = 1, // Doesn't matter for this class. .backing_bits = cg.module.backingIntBits(1).@"0", .vector_len = vector_len, .signedness = .unsigned, // Technically, but doesn't matter for this class. .class = .bool, }, .float => .{ .bits = scalar_ty.floatBits(target), .backing_bits = scalar_ty.floatBits(target), // TODO: F80? .vector_len = vector_len, .signedness = .signed, // Technically, but doesn't matter for this class. .class = .float, }, .int => blk: { const int_info = scalar_ty.intInfo(zcu); // TODO: Maybe it's useful to also return this value. const backing_bits, const big_int = cg.module.backingIntBits(int_info.bits); break :blk .{ .bits = int_info.bits, .backing_bits = backing_bits, .vector_len = vector_len, .signedness = int_info.signedness, .class = class: { if (big_int) break :class .composite_integer; break :class if (backing_bits == int_info.bits) .integer else .strange_integer; }, }; }, .@"enum" => unreachable, .vector => unreachable, else => unreachable, // Unhandled arithmetic type }; } /// Checks whether the type can be directly translated to SPIR-V vectors fn isSpvVector(cg: *CodeGen, ty: Type) bool { const zcu = cg.module.zcu; const target = cg.module.zcu.getTarget(); if (ty.zigTypeTag(zcu) != .vector) return false; // TODO: This check must be expanded for types that can be represented // as integers (enums / packed structs?) and types that are represented // by multiple SPIR-V values. const scalar_ty = ty.scalarType(zcu); switch (scalar_ty.zigTypeTag(zcu)) { .bool, .int, .float, => {}, else => return false, } const elem_ty = ty.childType(zcu); const len = ty.vectorLen(zcu); if (elem_ty.isNumeric(zcu) or elem_ty.toIntern() == .bool_type) { if (len > 1 and len <= 4) return true; if (target.cpu.has(.spirv, .vector16)) return (len == 8 or len == 16); } return false; } /// Emits a bool constant in a particular representation. fn constBool(cg: *CodeGen, value: bool, repr: Repr) !Id { return switch (repr) { .indirect => cg.constInt(.u1, @intFromBool(value)), .direct => cg.module.constBool(value), }; } /// Emits an integer constant. /// This function, unlike Module.constInt, takes care to bitcast /// the value to an unsigned int first for Kernels. fn constInt(cg: *CodeGen, ty: Type, value: anytype) !Id { const zcu = cg.module.zcu; const target = cg.module.zcu.getTarget(); const scalar_ty = ty.scalarType(zcu); const int_info = scalar_ty.intInfo(zcu); // Use backing bits so that negatives are sign extended const backing_bits, const big_int = cg.module.backingIntBits(int_info.bits); assert(backing_bits != 0); // u0 is comptime const result_ty_id = try cg.resolveType(scalar_ty, .indirect); const signedness: Signedness = switch (@typeInfo(@TypeOf(value))) { .int => |int| int.signedness, .comptime_int => if (value < 0) .signed else .unsigned, else => unreachable, }; if (@sizeOf(@TypeOf(value)) >= 4 and big_int) { const value64: u64 = switch (signedness) { .signed => @bitCast(@as(i64, @intCast(value))), .unsigned => @as(u64, @intCast(value)), }; assert(backing_bits == 64); return cg.constructComposite(result_ty_id, &.{ try cg.constInt(.u32, @as(u32, @truncate(value64))), try cg.constInt(.u32, @as(u32, @truncate(value64 << 32))), }); } const final_value: spec.LiteralContextDependentNumber = switch (target.os.tag) { .opencl, .amdhsa => blk: { const value64: u64 = switch (signedness) { .signed => @bitCast(@as(i64, @intCast(value))), .unsigned => @as(u64, @intCast(value)), }; // Manually truncate the value to the right amount of bits. const truncated_value = if (backing_bits == 64) value64 else value64 & (@as(u64, 1) << @intCast(backing_bits)) - 1; break :blk switch (backing_bits) { 1...32 => .{ .uint32 = @truncate(truncated_value) }, 33...64 => .{ .uint64 = truncated_value }, else => unreachable, }; }, else => switch (backing_bits) { 1...32 => if (signedness == .signed) .{ .int32 = @intCast(value) } else .{ .uint32 = @intCast(value) }, 33...64 => if (signedness == .signed) .{ .int64 = value } else .{ .uint64 = value }, else => unreachable, }, }; const result_id = try cg.module.constant(result_ty_id, final_value); if (!ty.isVector(zcu)) return result_id; return cg.constructCompositeSplat(ty, result_id); } pub fn constructComposite(cg: *CodeGen, result_ty_id: Id, constituents: []const Id) !Id { const gpa = cg.module.gpa; const result_id = cg.module.allocId(); try cg.body.emit(gpa, .OpCompositeConstruct, .{ .id_result_type = result_ty_id, .id_result = result_id, .constituents = constituents, }); return result_id; } /// Construct a composite at runtime with all lanes set to the same value. /// ty must be an aggregate type. fn constructCompositeSplat(cg: *CodeGen, ty: Type, constituent: Id) !Id { const gpa = cg.module.gpa; const zcu = cg.module.zcu; const n: usize = @intCast(ty.arrayLen(zcu)); const scratch_top = cg.id_scratch.items.len; defer cg.id_scratch.shrinkRetainingCapacity(scratch_top); const constituents = try cg.id_scratch.addManyAsSlice(gpa, n); @memset(constituents, constituent); const result_ty_id = try cg.resolveType(ty, .direct); return cg.constructComposite(result_ty_id, constituents); } /// This function generates a load for a constant in direct (ie, non-memory) representation. /// When the constant is simple, it can be generated directly using OpConstant instructions. /// When the constant is more complicated however, it needs to be constructed using multiple values. This /// is done by emitting a sequence of instructions that initialize the value. // /// This function should only be called during function code generation. fn constant(cg: *CodeGen, ty: Type, val: Value, repr: Repr) Error!Id { const gpa = cg.module.gpa; // Note: Using intern_map can only be used with constants that DO NOT generate any runtime code!! // Ideally that should be all constants in the future, or it should be cleaned up somehow. For // now, only use the intern_map on case-by-case basis by breaking to :cache. if (cg.module.intern_map.get(.{ val.toIntern(), repr })) |id| { return id; } const pt = cg.pt; const zcu = cg.module.zcu; const target = cg.module.zcu.getTarget(); const result_ty_id = try cg.resolveType(ty, repr); const ip = &zcu.intern_pool; log.debug("lowering constant: ty = {f}, val = {f}, key = {s}", .{ ty.fmt(pt), val.fmtValue(pt), @tagName(ip.indexToKey(val.toIntern())) }); if (val.isUndef(zcu)) { return cg.module.constUndef(result_ty_id); } const cacheable_id = cache: { switch (ip.indexToKey(val.toIntern())) { .int_type, .ptr_type, .array_type, .vector_type, .opt_type, .anyframe_type, .error_union_type, .simple_type, .struct_type, .tuple_type, .union_type, .opaque_type, .enum_type, .func_type, .error_set_type, .inferred_error_set_type, => unreachable, // types, not values .undef => unreachable, // handled above .variable, .@"extern", .func, .enum_literal, .empty_enum_value, => unreachable, // non-runtime values .simple_value => |simple_value| switch (simple_value) { .undefined, .void, .null, .empty_tuple, .@"unreachable", => unreachable, // non-runtime values .false, .true => break :cache try cg.constBool(val.toBool(), repr), }, .int => { if (ty.isSignedInt(zcu)) { break :cache try cg.constInt(ty, val.toSignedInt(zcu)); } else { break :cache try cg.constInt(ty, val.toUnsignedInt(zcu)); } }, .float => { const lit: spec.LiteralContextDependentNumber = switch (ty.floatBits(target)) { 16 => .{ .uint32 = @as(u16, @bitCast(val.toFloat(f16, zcu))) }, 32 => .{ .float32 = val.toFloat(f32, zcu) }, 64 => .{ .float64 = val.toFloat(f64, zcu) }, 80, 128 => unreachable, // TODO else => unreachable, }; break :cache try cg.module.constant(result_ty_id, lit); }, .err => |err| { const value = try pt.getErrorValue(err.name); break :cache try cg.constInt(ty, value); }, .error_union => |error_union| { // TODO: Error unions may be constructed with constant instructions if the payload type // allows it. For now, just generate it here regardless. const err_ty = ty.errorUnionSet(zcu); const payload_ty = ty.errorUnionPayload(zcu); const err_val_id = switch (error_union.val) { .err_name => |err_name| try cg.constInt( err_ty, try pt.getErrorValue(err_name), ), .payload => try cg.constInt(err_ty, 0), }; const eu_layout = cg.errorUnionLayout(payload_ty); if (!eu_layout.payload_has_bits) { // We use the error type directly as the type. break :cache err_val_id; } const payload_val_id = switch (error_union.val) { .err_name => try cg.constant(payload_ty, .undef, .indirect), .payload => |p| try cg.constant(payload_ty, .fromInterned(p), .indirect), }; var constituents: [2]Id = undefined; var types: [2]Type = undefined; if (eu_layout.error_first) { constituents[0] = err_val_id; constituents[1] = payload_val_id; types = .{ err_ty, payload_ty }; } else { constituents[0] = payload_val_id; constituents[1] = err_val_id; types = .{ payload_ty, err_ty }; } const comp_ty_id = try cg.resolveType(ty, .direct); return try cg.constructComposite(comp_ty_id, &constituents); }, .enum_tag => { const int_val = try val.intFromEnum(ty, pt); const int_ty = ty.intTagType(zcu); break :cache try cg.constant(int_ty, int_val, repr); }, .ptr => return cg.constantPtr(val), .slice => |slice| { const ptr_id = try cg.constantPtr(.fromInterned(slice.ptr)); const len_id = try cg.constant(.usize, .fromInterned(slice.len), .indirect); const comp_ty_id = try cg.resolveType(ty, .direct); return try cg.constructComposite(comp_ty_id, &.{ ptr_id, len_id }); }, .opt => { const payload_ty = ty.optionalChild(zcu); const maybe_payload_val = val.optionalValue(zcu); if (!payload_ty.hasRuntimeBits(zcu)) { break :cache try cg.constBool(maybe_payload_val != null, .indirect); } else if (ty.optionalReprIsPayload(zcu)) { // Optional representation is a nullable pointer or slice. if (maybe_payload_val) |payload_val| { return try cg.constant(payload_ty, payload_val, .indirect); } else { break :cache try cg.module.constNull(result_ty_id); } } // Optional representation is a structure. // { Payload, Bool } const has_pl_id = try cg.constBool(maybe_payload_val != null, .indirect); const payload_id = if (maybe_payload_val) |payload_val| try cg.constant(payload_ty, payload_val, .indirect) else try cg.module.constUndef(try cg.resolveType(payload_ty, .indirect)); const comp_ty_id = try cg.resolveType(ty, .direct); return try cg.constructComposite(comp_ty_id, &.{ payload_id, has_pl_id }); }, .aggregate => |aggregate| switch (ip.indexToKey(ty.ip_index)) { inline .array_type, .vector_type => |array_type, tag| { const elem_ty: Type = .fromInterned(array_type.child); const scratch_top = cg.id_scratch.items.len; defer cg.id_scratch.shrinkRetainingCapacity(scratch_top); const constituents = try cg.id_scratch.addManyAsSlice(gpa, @intCast(ty.arrayLenIncludingSentinel(zcu))); const child_repr: Repr = switch (tag) { .array_type => .indirect, .vector_type => .direct, else => unreachable, }; switch (aggregate.storage) { .bytes => |bytes| { // TODO: This is really space inefficient, perhaps there is a better // way to do it? for (constituents, bytes.toSlice(constituents.len, ip)) |*constituent, byte| { constituent.* = try cg.constInt(elem_ty, byte); } }, .elems => |elems| { for (constituents, elems) |*constituent, elem| { constituent.* = try cg.constant(elem_ty, .fromInterned(elem), child_repr); } }, .repeated_elem => |elem| { @memset(constituents, try cg.constant(elem_ty, .fromInterned(elem), child_repr)); }, } const comp_ty_id = try cg.resolveType(ty, .direct); return cg.constructComposite(comp_ty_id, constituents); }, .struct_type => { const struct_type = zcu.typeToStruct(ty).?; if (struct_type.layout == .@"packed") { // TODO: composite int // TODO: endianness const bits: u16 = @intCast(ty.bitSize(zcu)); const bytes = std.mem.alignForward(u16, cg.module.backingIntBits(bits).@"0", 8) / 8; var limbs: [8]u8 = undefined; @memset(&limbs, 0); val.writeToPackedMemory(ty, pt, limbs[0..bytes], 0) catch unreachable; const backing_ty: Type = .fromInterned(struct_type.backingIntTypeUnordered(ip)); return try cg.constInt(backing_ty, @as(u64, @bitCast(limbs))); } var types = std.array_list.Managed(Type).init(gpa); defer types.deinit(); var constituents = std.array_list.Managed(Id).init(gpa); defer constituents.deinit(); var it = struct_type.iterateRuntimeOrder(ip); while (it.next()) |field_index| { const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[field_index]); if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) { // This is a zero-bit field - we only needed it for the alignment. continue; } // TODO: Padding? const field_val = try val.fieldValue(pt, field_index); const field_id = try cg.constant(field_ty, field_val, .indirect); try types.append(field_ty); try constituents.append(field_id); } const comp_ty_id = try cg.resolveType(ty, .direct); return try cg.constructComposite(comp_ty_id, constituents.items); }, .tuple_type => return cg.todo("implement tuple types", .{}), else => unreachable, }, .un => |un| { if (un.tag == .none) { assert(ty.containerLayout(zcu) == .@"packed"); // TODO const int_ty = try pt.intType(.unsigned, @intCast(ty.bitSize(zcu))); return try cg.constInt(int_ty, Value.toUnsignedInt(.fromInterned(un.val), zcu)); } const active_field = ty.unionTagFieldIndex(.fromInterned(un.tag), zcu).?; const union_obj = zcu.typeToUnion(ty).?; const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[active_field]); const payload = if (field_ty.hasRuntimeBitsIgnoreComptime(zcu)) try cg.constant(field_ty, .fromInterned(un.val), .direct) else null; return try cg.unionInit(ty, active_field, payload); }, .memoized_call => unreachable, } }; try cg.module.intern_map.putNoClobber(gpa, .{ val.toIntern(), repr }, cacheable_id); return cacheable_id; } fn constantPtr(cg: *CodeGen, ptr_val: Value) !Id { const pt = cg.pt; const zcu = cg.module.zcu; const gpa = cg.module.gpa; if (ptr_val.isUndef(zcu)) { const result_ty = ptr_val.typeOf(zcu); const result_ty_id = try cg.resolveType(result_ty, .direct); return cg.module.constUndef(result_ty_id); } var arena = std.heap.ArenaAllocator.init(gpa); defer arena.deinit(); const derivation = try ptr_val.pointerDerivation(arena.allocator(), pt); return cg.derivePtr(derivation); } fn derivePtr(cg: *CodeGen, derivation: Value.PointerDeriveStep) !Id { const gpa = cg.module.gpa; const pt = cg.pt; const zcu = cg.module.zcu; const target = zcu.getTarget(); switch (derivation) { .comptime_alloc_ptr, .comptime_field_ptr => unreachable, .int => |int| { if (target.os.tag != .opencl) { if (int.ptr_ty.ptrAddressSpace(zcu) != .physical_storage_buffer) { return cg.fail( "cannot cast integer to pointer with address space '{s}'", .{@tagName(int.ptr_ty.ptrAddressSpace(zcu))}, ); } } const result_ty_id = try cg.resolveType(int.ptr_ty, .direct); // TODO: This can probably be an OpSpecConstantOp Bitcast, but // that is not implemented by Mesa yet. Therefore, just generate it // as a runtime operation. const result_ptr_id = cg.module.allocId(); const value_id = try cg.constInt(.usize, int.addr); try cg.body.emit(gpa, .OpConvertUToPtr, .{ .id_result_type = result_ty_id, .id_result = result_ptr_id, .integer_value = value_id, }); return result_ptr_id; }, .nav_ptr => |nav| { const result_ptr_ty = try pt.navPtrType(nav); return cg.constantNavRef(result_ptr_ty, nav); }, .uav_ptr => |uav| { const result_ptr_ty: Type = .fromInterned(uav.orig_ty); return cg.constantUavRef(result_ptr_ty, uav); }, .eu_payload_ptr => @panic("TODO"), .opt_payload_ptr => @panic("TODO"), .field_ptr => |field| { const parent_ptr_id = try cg.derivePtr(field.parent.*); const parent_ptr_ty = try field.parent.ptrType(pt); return cg.structFieldPtr(field.result_ptr_ty, parent_ptr_ty, parent_ptr_id, field.field_idx); }, .elem_ptr => |elem| { const parent_ptr_id = try cg.derivePtr(elem.parent.*); const parent_ptr_ty = try elem.parent.ptrType(pt); const index_id = try cg.constInt(.usize, elem.elem_idx); return cg.ptrElemPtr(parent_ptr_ty, parent_ptr_id, index_id); }, .offset_and_cast => |oac| { const parent_ptr_id = try cg.derivePtr(oac.parent.*); const parent_ptr_ty = try oac.parent.ptrType(pt); const result_ty_id = try cg.resolveType(oac.new_ptr_ty, .direct); const child_size = oac.new_ptr_ty.childType(zcu).abiSize(zcu); if (parent_ptr_ty.childType(zcu).isVector(zcu) and oac.byte_offset % child_size == 0) { // Vector element ptr accesses are derived as offset_and_cast. // We can just use OpAccessChain. return cg.accessChain( result_ty_id, parent_ptr_id, &.{@intCast(@divExact(oac.byte_offset, child_size))}, ); } if (oac.byte_offset == 0) { // Allow changing the pointer type child only to restructure arrays. // e.g. [3][2]T to T is fine, as is [2]T -> [2][1]T. const result_ptr_id = cg.module.allocId(); try cg.body.emit(gpa, .OpBitcast, .{ .id_result_type = result_ty_id, .id_result = result_ptr_id, .operand = parent_ptr_id, }); return result_ptr_id; } return cg.fail("cannot perform pointer cast: '{f}' to '{f}'", .{ parent_ptr_ty.fmt(pt), oac.new_ptr_ty.fmt(pt), }); }, } } fn constantUavRef( cg: *CodeGen, ty: Type, uav: InternPool.Key.Ptr.BaseAddr.Uav, ) !Id { // TODO: Merge this function with constantDeclRef. const zcu = cg.module.zcu; const ip = &zcu.intern_pool; const ty_id = try cg.resolveType(ty, .direct); const uav_ty: Type = .fromInterned(ip.typeOf(uav.val)); switch (ip.indexToKey(uav.val)) { .func => unreachable, // TODO .@"extern" => assert(!ip.isFunctionType(uav_ty.toIntern())), else => {}, } // const is_fn_body = decl_ty.zigTypeTag(zcu) == .@"fn"; if (!uav_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) { // Pointer to nothing - return undefined return cg.module.constUndef(ty_id); } // Uav refs are always generic. assert(ty.ptrAddressSpace(zcu) == .generic); const uav_ty_id = try cg.resolveType(uav_ty, .indirect); const decl_ptr_ty_id = try cg.module.ptrType(uav_ty_id, .function); const ptr_id = try cg.resolveUav(uav.val); if (decl_ptr_ty_id != ty_id) { // Differing pointer types, insert a cast. const casted_ptr_id = cg.module.allocId(); try cg.body.emit(cg.module.gpa, .OpBitcast, .{ .id_result_type = ty_id, .id_result = casted_ptr_id, .operand = ptr_id, }); return casted_ptr_id; } else { return ptr_id; } } fn constantNavRef(cg: *CodeGen, ty: Type, nav_index: InternPool.Nav.Index) !Id { const zcu = cg.module.zcu; const ip = &zcu.intern_pool; const ty_id = try cg.resolveType(ty, .direct); const nav = ip.getNav(nav_index); const nav_ty: Type = .fromInterned(nav.typeOf(ip)); switch (nav.status) { .unresolved => unreachable, .type_resolved => {}, // this is not a function or extern .fully_resolved => |r| switch (ip.indexToKey(r.val)) { .func => { // TODO: Properly lower function pointers. For now we are going to hack around it and // just generate an empty pointer. Function pointers are represented by a pointer to usize. return try cg.module.constUndef(ty_id); }, .@"extern" => if (ip.isFunctionType(nav_ty.toIntern())) @panic("TODO"), else => {}, }, } if (!nav_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) { // Pointer to nothing - return undefined. return cg.module.constUndef(ty_id); } const spv_decl_index = try cg.module.resolveNav(ip, nav_index); const spv_decl = cg.module.declPtr(spv_decl_index); const spv_decl_result_id = spv_decl.result_id; assert(spv_decl.kind != .func); const storage_class = cg.module.storageClass(nav.getAddrspace()); try cg.addFunctionDep(spv_decl_index, storage_class); const nav_ty_id = try cg.resolveType(nav_ty, .indirect); const decl_ptr_ty_id = try cg.module.ptrType(nav_ty_id, storage_class); if (decl_ptr_ty_id != ty_id) { // Differing pointer types, insert a cast. const casted_ptr_id = cg.module.allocId(); try cg.body.emit(cg.module.gpa, .OpBitcast, .{ .id_result_type = ty_id, .id_result = casted_ptr_id, .operand = spv_decl_result_id, }); return casted_ptr_id; } return spv_decl_result_id; } // Turn a Zig type's name into a cache reference. fn resolveTypeName(cg: *CodeGen, ty: Type) ![]const u8 { const gpa = cg.module.gpa; var aw: std.Io.Writer.Allocating = .init(gpa); defer aw.deinit(); ty.print(&aw.writer, cg.pt) catch |err| switch (err) { error.WriteFailed => return error.OutOfMemory, }; return try aw.toOwnedSlice(); } /// Generate a union type. Union types are always generated with the /// most aligned field active. If the tag alignment is greater /// than that of the payload, a regular union (non-packed, with both tag and /// payload), will be generated as follows: /// struct { /// tag: TagType, /// payload: MostAlignedFieldType, /// payload_padding: [payload_size - @sizeOf(MostAlignedFieldType)]u8, /// padding: [padding_size]u8, /// } /// If the payload alignment is greater than that of the tag: /// struct { /// payload: MostAlignedFieldType, /// payload_padding: [payload_size - @sizeOf(MostAlignedFieldType)]u8, /// tag: TagType, /// padding: [padding_size]u8, /// } /// If any of the fields' size is 0, it will be omitted. fn resolveUnionType(cg: *CodeGen, ty: Type) !Id { const gpa = cg.module.gpa; const zcu = cg.module.zcu; const ip = &zcu.intern_pool; const union_obj = zcu.typeToUnion(ty).?; if (union_obj.flagsUnordered(ip).layout == .@"packed") { return try cg.module.intType(.unsigned, @intCast(ty.bitSize(zcu))); } const layout = cg.unionLayout(ty); if (!layout.has_payload) { // No payload, so represent this as just the tag type. return try cg.resolveType(.fromInterned(union_obj.enum_tag_ty), .indirect); } var member_types: [4]Id = undefined; var member_names: [4][]const u8 = undefined; const u8_ty_id = try cg.resolveType(.u8, .direct); if (layout.tag_size != 0) { const tag_ty_id = try cg.resolveType(.fromInterned(union_obj.enum_tag_ty), .indirect); member_types[layout.tag_index] = tag_ty_id; member_names[layout.tag_index] = "(tag)"; } if (layout.payload_size != 0) { const payload_ty_id = try cg.resolveType(layout.payload_ty, .indirect); member_types[layout.payload_index] = payload_ty_id; member_names[layout.payload_index] = "(payload)"; } if (layout.payload_padding_size != 0) { const len_id = try cg.constInt(.u32, layout.payload_padding_size); const payload_padding_ty_id = try cg.module.arrayType(len_id, u8_ty_id); member_types[layout.payload_padding_index] = payload_padding_ty_id; member_names[layout.payload_padding_index] = "(payload padding)"; } if (layout.padding_size != 0) { const len_id = try cg.constInt(.u32, layout.padding_size); const padding_ty_id = try cg.module.arrayType(len_id, u8_ty_id); member_types[layout.padding_index] = padding_ty_id; member_names[layout.padding_index] = "(padding)"; } const result_id = try cg.module.structType( member_types[0..layout.total_fields], member_names[0..layout.total_fields], null, .none, ); const type_name = try cg.resolveTypeName(ty); defer gpa.free(type_name); try cg.module.debugName(result_id, type_name); return result_id; } fn resolveFnReturnType(cg: *CodeGen, ret_ty: Type) !Id { const zcu = cg.module.zcu; if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) { // If the return type is an error set or an error union, then we make this // anyerror return type instead, so that it can be coerced into a function // pointer type which has anyerror as the return type. if (ret_ty.isError(zcu)) { return cg.resolveType(.anyerror, .direct); } else { return cg.resolveType(.void, .direct); } } return try cg.resolveType(ret_ty, .direct); } fn resolveType(cg: *CodeGen, ty: Type, repr: Repr) Error!Id { const gpa = cg.module.gpa; const pt = cg.pt; const zcu = cg.module.zcu; const ip = &zcu.intern_pool; const target = cg.module.zcu.getTarget(); log.debug("resolveType: ty = {f}", .{ty.fmt(pt)}); switch (ty.zigTypeTag(zcu)) { .noreturn => { assert(repr == .direct); return try cg.module.voidType(); }, .void => switch (repr) { .direct => return try cg.module.voidType(), .indirect => { if (target.os.tag != .opencl) return cg.fail("cannot generate opaque type", .{}); return try cg.module.opaqueType("void"); }, }, .bool => switch (repr) { .direct => return try cg.module.boolType(), .indirect => return try cg.resolveType(.u1, .indirect), }, .int => { const int_info = ty.intInfo(zcu); if (int_info.bits == 0) { assert(repr == .indirect); if (target.os.tag != .opencl) return cg.fail("cannot generate opaque type", .{}); return try cg.module.opaqueType("u0"); } return try cg.module.intType(int_info.signedness, int_info.bits); }, .@"enum" => return try cg.resolveType(ty.intTagType(zcu), repr), .float => { const bits = ty.floatBits(target); const supported = switch (bits) { 16 => target.cpu.has(.spirv, .float16), 32 => true, 64 => target.cpu.has(.spirv, .float64), else => false, }; if (!supported) { return cg.fail( "floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits}, ); } return try cg.module.floatType(bits); }, .array => { const elem_ty = ty.childType(zcu); const elem_ty_id = try cg.resolveType(elem_ty, .indirect); const total_len = std.math.cast(u32, ty.arrayLenIncludingSentinel(zcu)) orelse { return cg.fail("array type of {} elements is too large", .{ty.arrayLenIncludingSentinel(zcu)}); }; if (!elem_ty.hasRuntimeBitsIgnoreComptime(zcu)) { assert(repr == .indirect); if (target.os.tag != .opencl) return cg.fail("cannot generate opaque type", .{}); return try cg.module.opaqueType("zero-sized-array"); } else if (total_len == 0) { // The size of the array would be 0, but that is not allowed in SPIR-V. // This path can be reached for example when there is a slicing of a pointer // that produces a zero-length array. In all cases where this type can be generated, // this should be an indirect path. assert(repr == .indirect); // In this case, we have an array of a non-zero sized type. In this case, // generate an array of 1 element instead, so that ptr_elem_ptr instructions // can be lowered to ptrAccessChain instead of manually performing the math. const len_id = try cg.constInt(.u32, 1); return try cg.module.arrayType(len_id, elem_ty_id); } else { const total_len_id = try cg.constInt(.u32, total_len); const result_id = try cg.module.arrayType(total_len_id, elem_ty_id); switch (target.os.tag) { .vulkan, .opengl => { try cg.module.decorate(result_id, .{ .array_stride = .{ .array_stride = @intCast(elem_ty.abiSize(zcu)), }, }); }, else => {}, } return result_id; } }, .vector => { const elem_ty = ty.childType(zcu); const elem_ty_id = try cg.resolveType(elem_ty, repr); const len = ty.vectorLen(zcu); if (cg.isSpvVector(ty)) return try cg.module.vectorType(len, elem_ty_id); const len_id = try cg.constInt(.u32, len); return try cg.module.arrayType(len_id, elem_ty_id); }, .@"fn" => switch (repr) { .direct => { const fn_info = zcu.typeToFunc(ty).?; comptime assert(zig_call_abi_ver == 3); assert(!fn_info.is_var_args); switch (fn_info.cc) { .auto, .spirv_kernel, .spirv_fragment, .spirv_vertex, .spirv_device, => {}, else => unreachable, } const return_ty_id = try cg.resolveFnReturnType(.fromInterned(fn_info.return_type)); const scratch_top = cg.id_scratch.items.len; defer cg.id_scratch.shrinkRetainingCapacity(scratch_top); const param_ty_ids = try cg.id_scratch.addManyAsSlice(gpa, fn_info.param_types.len); var param_index: usize = 0; for (fn_info.param_types.get(ip)) |param_ty_index| { const param_ty: Type = .fromInterned(param_ty_index); if (!param_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue; param_ty_ids[param_index] = try cg.resolveType(param_ty, .direct); param_index += 1; } return try cg.module.functionType(return_ty_id, param_ty_ids[0..param_index]); }, .indirect => { // TODO: Represent function pointers properly. // For now, just use an usize type. return try cg.resolveType(.usize, .indirect); }, }, .pointer => { const ptr_info = ty.ptrInfo(zcu); const child_ty: Type = .fromInterned(ptr_info.child); const child_ty_id = try cg.resolveType(child_ty, .indirect); const storage_class = cg.module.storageClass(ptr_info.flags.address_space); const ptr_ty_id = try cg.module.ptrType(child_ty_id, storage_class); if (ptr_info.flags.size != .slice) { return ptr_ty_id; } const size_ty_id = try cg.resolveType(.usize, .direct); return try cg.module.structType( &.{ ptr_ty_id, size_ty_id }, &.{ "ptr", "len" }, null, .none, ); }, .@"struct" => { const struct_type = switch (ip.indexToKey(ty.toIntern())) { .tuple_type => |tuple| { const scratch_top = cg.id_scratch.items.len; defer cg.id_scratch.shrinkRetainingCapacity(scratch_top); const member_types = try cg.id_scratch.addManyAsSlice(gpa, tuple.values.len); var member_index: usize = 0; for (tuple.types.get(ip), tuple.values.get(ip)) |field_ty, field_val| { if (field_val != .none or !Type.fromInterned(field_ty).hasRuntimeBits(zcu)) continue; member_types[member_index] = try cg.resolveType(.fromInterned(field_ty), .indirect); member_index += 1; } const result_id = try cg.module.structType( member_types[0..member_index], null, null, .none, ); const type_name = try cg.resolveTypeName(ty); defer gpa.free(type_name); try cg.module.debugName(result_id, type_name); return result_id; }, .struct_type => ip.loadStructType(ty.toIntern()), else => unreachable, }; if (struct_type.layout == .@"packed") { return try cg.resolveType(.fromInterned(struct_type.backingIntTypeUnordered(ip)), .direct); } var member_types = std.array_list.Managed(Id).init(gpa); defer member_types.deinit(); var member_names = std.array_list.Managed([]const u8).init(gpa); defer member_names.deinit(); var member_offsets = std.array_list.Managed(u32).init(gpa); defer member_offsets.deinit(); var it = struct_type.iterateRuntimeOrder(ip); while (it.next()) |field_index| { const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[field_index]); if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue; const field_name = struct_type.fieldName(ip, field_index).unwrap() orelse try ip.getOrPutStringFmt(zcu.gpa, pt.tid, "{d}", .{field_index}, .no_embedded_nulls); try member_types.append(try cg.resolveType(field_ty, .indirect)); try member_names.append(field_name.toSlice(ip)); try member_offsets.append(@intCast(ty.structFieldOffset(field_index, zcu))); } const result_id = try cg.module.structType( member_types.items, member_names.items, member_offsets.items, ty.toIntern(), ); const type_name = try cg.resolveTypeName(ty); defer gpa.free(type_name); try cg.module.debugName(result_id, type_name); return result_id; }, .optional => { const payload_ty = ty.optionalChild(zcu); if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) { // Just use a bool. // Note: Always generate the bool with indirect format, to save on some sanity // Perform the conversion to a direct bool when the field is extracted. return try cg.resolveType(.bool, .indirect); } const payload_ty_id = try cg.resolveType(payload_ty, .indirect); if (ty.optionalReprIsPayload(zcu)) { // Optional is actually a pointer or a slice. return payload_ty_id; } const bool_ty_id = try cg.resolveType(.bool, .indirect); return try cg.module.structType( &.{ payload_ty_id, bool_ty_id }, &.{ "payload", "valid" }, null, .none, ); }, .@"union" => return try cg.resolveUnionType(ty), .error_set => { const err_int_ty = try pt.errorIntType(); return try cg.resolveType(err_int_ty, repr); }, .error_union => { const payload_ty = ty.errorUnionPayload(zcu); const err_ty = ty.errorUnionSet(zcu); const error_ty_id = try cg.resolveType(err_ty, .indirect); const eu_layout = cg.errorUnionLayout(payload_ty); if (!eu_layout.payload_has_bits) { return error_ty_id; } const payload_ty_id = try cg.resolveType(payload_ty, .indirect); var member_types: [2]Id = undefined; var member_names: [2][]const u8 = undefined; if (eu_layout.error_first) { // Put the error first member_types = .{ error_ty_id, payload_ty_id }; member_names = .{ "error", "payload" }; // TODO: ABI padding? } else { // Put the payload first. member_types = .{ payload_ty_id, error_ty_id }; member_names = .{ "payload", "error" }; // TODO: ABI padding? } return try cg.module.structType(&member_types, &member_names, null, .none); }, .@"opaque" => { if (target.os.tag != .opencl) return cg.fail("cannot generate opaque type", .{}); const type_name = try cg.resolveTypeName(ty); defer gpa.free(type_name); return try cg.module.opaqueType(type_name); }, .null, .undefined, .enum_literal, .comptime_float, .comptime_int, .type, => unreachable, // Must be comptime. .frame, .@"anyframe" => unreachable, // TODO } } const ErrorUnionLayout = struct { payload_has_bits: bool, error_first: bool, fn errorFieldIndex(cg: @This()) u32 { assert(cg.payload_has_bits); return if (cg.error_first) 0 else 1; } fn payloadFieldIndex(cg: @This()) u32 { assert(cg.payload_has_bits); return if (cg.error_first) 1 else 0; } }; fn errorUnionLayout(cg: *CodeGen, payload_ty: Type) ErrorUnionLayout { const zcu = cg.module.zcu; const error_align = Type.abiAlignment(.anyerror, zcu); const payload_align = payload_ty.abiAlignment(zcu); const error_first = error_align.compare(.gt, payload_align); return .{ .payload_has_bits = payload_ty.hasRuntimeBitsIgnoreComptime(zcu), .error_first = error_first, }; } const UnionLayout = struct { /// If false, this union is represented /// by only an integer of the tag type. has_payload: bool, tag_size: u32, tag_index: u32, /// Note: This is the size of the payload type itcg, NOT the size of the ENTIRE payload. /// Use `has_payload` instead!! payload_ty: Type, payload_size: u32, payload_index: u32, payload_padding_size: u32, payload_padding_index: u32, padding_size: u32, padding_index: u32, total_fields: u32, }; fn unionLayout(cg: *CodeGen, ty: Type) UnionLayout { const zcu = cg.module.zcu; const ip = &zcu.intern_pool; const layout = ty.unionGetLayout(zcu); const union_obj = zcu.typeToUnion(ty).?; var union_layout: UnionLayout = .{ .has_payload = layout.payload_size != 0, .tag_size = @intCast(layout.tag_size), .tag_index = undefined, .payload_ty = undefined, .payload_size = undefined, .payload_index = undefined, .payload_padding_size = undefined, .payload_padding_index = undefined, .padding_size = @intCast(layout.padding), .padding_index = undefined, .total_fields = undefined, }; if (union_layout.has_payload) { const most_aligned_field = layout.most_aligned_field; const most_aligned_field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[most_aligned_field]); union_layout.payload_ty = most_aligned_field_ty; union_layout.payload_size = @intCast(most_aligned_field_ty.abiSize(zcu)); } else { union_layout.payload_size = 0; } union_layout.payload_padding_size = @intCast(layout.payload_size - union_layout.payload_size); const tag_first = layout.tag_align.compare(.gte, layout.payload_align); var field_index: u32 = 0; if (union_layout.tag_size != 0 and tag_first) { union_layout.tag_index = field_index; field_index += 1; } if (union_layout.payload_size != 0) { union_layout.payload_index = field_index; field_index += 1; } if (union_layout.payload_padding_size != 0) { union_layout.payload_padding_index = field_index; field_index += 1; } if (union_layout.tag_size != 0 and !tag_first) { union_layout.tag_index = field_index; field_index += 1; } if (union_layout.padding_size != 0) { union_layout.padding_index = field_index; field_index += 1; } union_layout.total_fields = field_index; return union_layout; } /// This structure represents a "temporary" value: Something we are currently /// operating on. It typically lives no longer than the function that /// implements a particular AIR operation. These are used to easier /// implement vectorizable operations (see Vectorization and the build* /// functions), and typically are only used for vectors of primitive types. const Temporary = struct { /// The type of the temporary. This is here mainly /// for easier bookkeeping. Because we will never really /// store Temporaries, they only cause extra stack space, /// therefore no real storage is wasted. ty: Type, /// The value that this temporary holds. This is not necessarily /// a value that is actually usable, or a single value: It is virtual /// until materialize() is called, at which point is turned into /// the usual SPIR-V representation of `cg.ty`. value: Temporary.Value, const Value = union(enum) { singleton: Id, exploded_vector: IdRange, }; fn init(ty: Type, singleton: Id) Temporary { return .{ .ty = ty, .value = .{ .singleton = singleton } }; } fn materialize(temp: Temporary, cg: *CodeGen) !Id { const gpa = cg.module.gpa; const zcu = cg.module.zcu; switch (temp.value) { .singleton => |id| return id, .exploded_vector => |range| { assert(temp.ty.isVector(zcu)); assert(temp.ty.vectorLen(zcu) == range.len); const scratch_top = cg.id_scratch.items.len; defer cg.id_scratch.shrinkRetainingCapacity(scratch_top); const constituents = try cg.id_scratch.addManyAsSlice(gpa, range.len); for (constituents, 0..range.len) |*id, i| { id.* = range.at(i); } const result_ty_id = try cg.resolveType(temp.ty, .direct); return cg.constructComposite(result_ty_id, constituents); }, } } fn vectorization(temp: Temporary, cg: *CodeGen) Vectorization { return .fromType(temp.ty, cg); } fn pun(temp: Temporary, new_ty: Type) Temporary { return .{ .ty = new_ty, .value = temp.value, }; } /// 'Explode' a temporary into separate elements. This turns a vector /// into a bag of elements. fn explode(temp: Temporary, cg: *CodeGen) !IdRange { const zcu = cg.module.zcu; // If the value is a scalar, then this is a no-op. if (!temp.ty.isVector(zcu)) { return switch (temp.value) { .singleton => |id| .{ .base = @intFromEnum(id), .len = 1 }, .exploded_vector => |range| range, }; } const ty_id = try cg.resolveType(temp.ty.scalarType(zcu), .direct); const n = temp.ty.vectorLen(zcu); const results = cg.module.allocIds(n); const id = switch (temp.value) { .singleton => |id| id, .exploded_vector => |range| return range, }; for (0..n) |i| { const indexes = [_]u32{@intCast(i)}; try cg.body.emit(cg.module.gpa, .OpCompositeExtract, .{ .id_result_type = ty_id, .id_result = results.at(i), .composite = id, .indexes = &indexes, }); } return results; } }; /// Initialize a `Temporary` from an AIR value. fn temporary(cg: *CodeGen, inst: Air.Inst.Ref) !Temporary { return .{ .ty = cg.typeOf(inst), .value = .{ .singleton = try cg.resolve(inst) }, }; } /// This union describes how a particular operation should be vectorized. /// That depends on the operation and number of components of the inputs. const Vectorization = union(enum) { /// This is an operation between scalars. scalar, /// This operation is unrolled into separate operations. /// Inputs may still be SPIR-V vectors, for example, /// when the operation can't be vectorized in SPIR-V. /// Value is number of components. unrolled: u32, /// Derive a vectorization from a particular type fn fromType(ty: Type, cg: *CodeGen) Vectorization { const zcu = cg.module.zcu; if (!ty.isVector(zcu)) return .scalar; return .{ .unrolled = ty.vectorLen(zcu) }; } /// Given two vectorization methods, compute a "unification": a fallback /// that works for both, according to the following rules: /// - Scalars may broadcast /// - SPIR-V vectorized operations will unroll /// - Prefer scalar > unrolled fn unify(a: Vectorization, b: Vectorization) Vectorization { if (a == .scalar and b == .scalar) return .scalar; if (a == .unrolled or b == .unrolled) { if (a == .unrolled and b == .unrolled) assert(a.components() == b.components()); if (a == .unrolled) return .{ .unrolled = a.components() }; return .{ .unrolled = b.components() }; } unreachable; } /// Query the number of components that inputs of this operation have. /// Note: for broadcasting scalars, this returns the number of elements /// that the broadcasted vector would have. fn components(vec: Vectorization) u32 { return switch (vec) { .scalar => 1, .unrolled => |n| n, }; } /// Turns `ty` into the result-type of the entire operation. /// `ty` may be a scalar or vector, it doesn't matter. fn resultType(vec: Vectorization, cg: *CodeGen, ty: Type) !Type { const pt = cg.pt; const zcu = cg.module.zcu; const scalar_ty = ty.scalarType(zcu); return switch (vec) { .scalar => scalar_ty, .unrolled => |n| try pt.vectorType(.{ .len = n, .child = scalar_ty.toIntern() }), }; } /// Before a temporary can be used, some setup may need to be one. This function implements /// this setup, and returns a new type that holds the relevant information on how to access /// elements of the input. fn prepare(vec: Vectorization, cg: *CodeGen, tmp: Temporary) !PreparedOperand { const zcu = cg.module.zcu; const is_vector = tmp.ty.isVector(zcu); const value: PreparedOperand.Value = switch (tmp.value) { .singleton => |id| switch (vec) { .scalar => blk: { assert(!is_vector); break :blk .{ .scalar = id }; }, .unrolled => blk: { if (is_vector) break :blk .{ .vector_exploded = try tmp.explode(cg) }; break :blk .{ .scalar_broadcast = id }; }, }, .exploded_vector => |range| switch (vec) { .scalar => unreachable, .unrolled => |n| blk: { assert(range.len == n); break :blk .{ .vector_exploded = range }; }, }, }; return .{ .ty = tmp.ty, .value = value, }; } /// Finalize the results of an operation back into a temporary. `results` is /// a list of result-ids of the operation. fn finalize(vec: Vectorization, ty: Type, results: IdRange) Temporary { assert(vec.components() == results.len); return .{ .ty = ty, .value = switch (vec) { .scalar => .{ .singleton = results.at(0) }, .unrolled => .{ .exploded_vector = results }, }, }; } /// This struct represents an operand that has gone through some setup, and is /// ready to be used as part of an operation. const PreparedOperand = struct { ty: Type, value: PreparedOperand.Value, /// The types of value that a prepared operand can hold internally. Depends /// on the operation and input value. const Value = union(enum) { /// A single scalar value that is used by a scalar operation. scalar: Id, /// A single scalar that is broadcasted in an unrolled operation. scalar_broadcast: Id, /// A vector represented by a consecutive list of IDs that is used in an unrolled operation. vector_exploded: IdRange, }; /// Query the value at a particular index of the operation. Note that /// the index is *not* the component/lane, but the index of the *operation*. fn at(op: PreparedOperand, i: usize) Id { switch (op.value) { .scalar => |id| { assert(i == 0); return id; }, .scalar_broadcast => |id| return id, .vector_exploded => |range| return range.at(i), } } }; }; /// A utility function to compute the vectorization style of /// a list of values. These values may be any of the following: /// - A `Vectorization` instance /// - A Type, in which case the vectorization is computed via `Vectorization.fromType`. /// - A Temporary, in which case the vectorization is computed via `Temporary.vectorization`. fn vectorization(cg: *CodeGen, args: anytype) Vectorization { var v: Vectorization = undefined; assert(args.len >= 1); inline for (args, 0..) |arg, i| { const iv: Vectorization = switch (@TypeOf(arg)) { Vectorization => arg, Type => Vectorization.fromType(arg, cg), Temporary => arg.vectorization(cg), else => @compileError("invalid type"), }; if (i == 0) { v = iv; } else { v = v.unify(iv); } } return v; } /// This function builds an OpSConvert of OpUConvert depending on the /// signedness of the types. fn buildConvert(cg: *CodeGen, dst_ty: Type, src: Temporary) !Temporary { const zcu = cg.module.zcu; const dst_ty_id = try cg.resolveType(dst_ty.scalarType(zcu), .direct); const src_ty_id = try cg.resolveType(src.ty.scalarType(zcu), .direct); const v = cg.vectorization(.{ dst_ty, src }); const result_ty = try v.resultType(cg, dst_ty); // We can directly compare integers, because those type-IDs are cached. if (dst_ty_id == src_ty_id) { // Nothing to do, type-pun to the right value. // Note, Caller guarantees that the types fit (or caller will normalize after), // so we don't have to normalize here. // Note, dst_ty may be a scalar type even if we expect a vector, so we have to // convert to the right type here. return src.pun(result_ty); } const ops = v.components(); const results = cg.module.allocIds(ops); const op_result_ty = dst_ty.scalarType(zcu); const op_result_ty_id = try cg.resolveType(op_result_ty, .direct); const opcode: Opcode = blk: { if (dst_ty.scalarType(zcu).isAnyFloat()) break :blk .OpFConvert; if (dst_ty.scalarType(zcu).isSignedInt(zcu)) break :blk .OpSConvert; break :blk .OpUConvert; }; const op_src = try v.prepare(cg, src); for (0..ops) |i| { try cg.body.emitRaw(cg.module.gpa, opcode, 3); cg.body.writeOperand(Id, op_result_ty_id); cg.body.writeOperand(Id, results.at(i)); cg.body.writeOperand(Id, op_src.at(i)); } return v.finalize(result_ty, results); } fn buildFma(cg: *CodeGen, a: Temporary, b: Temporary, c: Temporary) !Temporary { const zcu = cg.module.zcu; const target = cg.module.zcu.getTarget(); const v = cg.vectorization(.{ a, b, c }); const ops = v.components(); const results = cg.module.allocIds(ops); const op_result_ty = a.ty.scalarType(zcu); const op_result_ty_id = try cg.resolveType(op_result_ty, .direct); const result_ty = try v.resultType(cg, a.ty); const op_a = try v.prepare(cg, a); const op_b = try v.prepare(cg, b); const op_c = try v.prepare(cg, c); const set = try cg.importExtendedSet(); const opcode: u32 = switch (target.os.tag) { .opencl => @intFromEnum(spec.OpenClOpcode.fma), // NOTE: Vulkan's FMA instruction does *NOT* produce the right values! // its precision guarantees do NOT match zigs and it does NOT match OpenCLs! // it needs to be emulated! .vulkan, .opengl => @intFromEnum(spec.GlslOpcode.Fma), else => unreachable, }; for (0..ops) |i| { try cg.body.emit(cg.module.gpa, .OpExtInst, .{ .id_result_type = op_result_ty_id, .id_result = results.at(i), .set = set, .instruction = .{ .inst = opcode }, .id_ref_4 = &.{ op_a.at(i), op_b.at(i), op_c.at(i) }, }); } return v.finalize(result_ty, results); } fn buildSelect(cg: *CodeGen, condition: Temporary, lhs: Temporary, rhs: Temporary) !Temporary { const zcu = cg.module.zcu; const v = cg.vectorization(.{ condition, lhs, rhs }); const ops = v.components(); const results = cg.module.allocIds(ops); const op_result_ty = lhs.ty.scalarType(zcu); const op_result_ty_id = try cg.resolveType(op_result_ty, .direct); const result_ty = try v.resultType(cg, lhs.ty); assert(condition.ty.scalarType(zcu).zigTypeTag(zcu) == .bool); const cond = try v.prepare(cg, condition); const object_1 = try v.prepare(cg, lhs); const object_2 = try v.prepare(cg, rhs); for (0..ops) |i| { try cg.body.emit(cg.module.gpa, .OpSelect, .{ .id_result_type = op_result_ty_id, .id_result = results.at(i), .condition = cond.at(i), .object_1 = object_1.at(i), .object_2 = object_2.at(i), }); } return v.finalize(result_ty, results); } fn buildCmp(cg: *CodeGen, opcode: Opcode, lhs: Temporary, rhs: Temporary) !Temporary { const v = cg.vectorization(.{ lhs, rhs }); const ops = v.components(); const results = cg.module.allocIds(ops); const op_result_ty: Type = .bool; const op_result_ty_id = try cg.resolveType(op_result_ty, .direct); const result_ty = try v.resultType(cg, Type.bool); const op_lhs = try v.prepare(cg, lhs); const op_rhs = try v.prepare(cg, rhs); for (0..ops) |i| { try cg.body.emitRaw(cg.module.gpa, opcode, 4); cg.body.writeOperand(Id, op_result_ty_id); cg.body.writeOperand(Id, results.at(i)); cg.body.writeOperand(Id, op_lhs.at(i)); cg.body.writeOperand(Id, op_rhs.at(i)); } return v.finalize(result_ty, results); } const UnaryOp = enum { l_not, bit_not, i_neg, f_neg, i_abs, f_abs, clz, ctz, floor, ceil, trunc, round, sqrt, sin, cos, tan, exp, exp2, log, log2, log10, pub fn extInstOpcode(op: UnaryOp, target: *const std.Target) ?u32 { return switch (target.os.tag) { .opencl => @intFromEnum(@as(spec.OpenClOpcode, switch (op) { .i_abs => .s_abs, .f_abs => .fabs, .clz => .clz, .ctz => .ctz, .floor => .floor, .ceil => .ceil, .trunc => .trunc, .round => .round, .sqrt => .sqrt, .sin => .sin, .cos => .cos, .tan => .tan, .exp => .exp, .exp2 => .exp2, .log => .log, .log2 => .log2, .log10 => .log10, else => return null, })), // Note: We'll need to check these for floating point accuracy // Vulkan does not put tight requirements on these, for correction // we might want to emulate them at some point. .vulkan, .opengl => @intFromEnum(@as(spec.GlslOpcode, switch (op) { .i_abs => .SAbs, .f_abs => .FAbs, .floor => .Floor, .ceil => .Ceil, .trunc => .Trunc, .round => .Round, else => return null, })), else => unreachable, }; } }; fn buildUnary(cg: *CodeGen, op: UnaryOp, operand: Temporary) !Temporary { const zcu = cg.module.zcu; const target = cg.module.zcu.getTarget(); const v = cg.vectorization(.{operand}); const ops = v.components(); const results = cg.module.allocIds(ops); const op_result_ty = operand.ty.scalarType(zcu); const op_result_ty_id = try cg.resolveType(op_result_ty, .direct); const result_ty = try v.resultType(cg, operand.ty); const op_operand = try v.prepare(cg, operand); if (op.extInstOpcode(target)) |opcode| { const set = try cg.importExtendedSet(); for (0..ops) |i| { try cg.body.emit(cg.module.gpa, .OpExtInst, .{ .id_result_type = op_result_ty_id, .id_result = results.at(i), .set = set, .instruction = .{ .inst = opcode }, .id_ref_4 = &.{op_operand.at(i)}, }); } } else { const opcode: Opcode = switch (op) { .l_not => .OpLogicalNot, .bit_not => .OpNot, .i_neg => .OpSNegate, .f_neg => .OpFNegate, else => return cg.todo( "implement unary operation '{s}' for {s} os", .{ @tagName(op), @tagName(target.os.tag) }, ), }; for (0..ops) |i| { try cg.body.emitRaw(cg.module.gpa, opcode, 3); cg.body.writeOperand(Id, op_result_ty_id); cg.body.writeOperand(Id, results.at(i)); cg.body.writeOperand(Id, op_operand.at(i)); } } return v.finalize(result_ty, results); } fn buildBinary(cg: *CodeGen, opcode: Opcode, lhs: Temporary, rhs: Temporary) !Temporary { const zcu = cg.module.zcu; const v = cg.vectorization(.{ lhs, rhs }); const ops = v.components(); const results = cg.module.allocIds(ops); const op_result_ty = lhs.ty.scalarType(zcu); const op_result_ty_id = try cg.resolveType(op_result_ty, .direct); const result_ty = try v.resultType(cg, lhs.ty); const op_lhs = try v.prepare(cg, lhs); const op_rhs = try v.prepare(cg, rhs); for (0..ops) |i| { try cg.body.emitRaw(cg.module.gpa, opcode, 4); cg.body.writeOperand(Id, op_result_ty_id); cg.body.writeOperand(Id, results.at(i)); cg.body.writeOperand(Id, op_lhs.at(i)); cg.body.writeOperand(Id, op_rhs.at(i)); } return v.finalize(result_ty, results); } /// This function builds an extended multiplication, either OpSMulExtended or OpUMulExtended on Vulkan, /// or OpIMul and s_mul_hi or u_mul_hi on OpenCL. fn buildWideMul( cg: *CodeGen, signedness: std.builtin.Signedness, lhs: Temporary, rhs: Temporary, ) !struct { Temporary, Temporary } { const pt = cg.pt; const zcu = cg.module.zcu; const target = cg.module.zcu.getTarget(); const ip = &zcu.intern_pool; const v = lhs.vectorization(cg).unify(rhs.vectorization(cg)); const ops = v.components(); const arith_op_ty = lhs.ty.scalarType(zcu); const arith_op_ty_id = try cg.resolveType(arith_op_ty, .direct); const lhs_op = try v.prepare(cg, lhs); const rhs_op = try v.prepare(cg, rhs); const value_results = cg.module.allocIds(ops); const overflow_results = cg.module.allocIds(ops); switch (target.os.tag) { .opencl => { // Currently, SPIRV-LLVM-Translator based backends cannot deal with OpSMulExtended and // OpUMulExtended. For these we will use the OpenCL s_mul_hi to compute the high-order bits // instead. const set = try cg.importExtendedSet(); const overflow_inst: spec.OpenClOpcode = switch (signedness) { .signed => .s_mul_hi, .unsigned => .u_mul_hi, }; for (0..ops) |i| { try cg.body.emit(cg.module.gpa, .OpIMul, .{ .id_result_type = arith_op_ty_id, .id_result = value_results.at(i), .operand_1 = lhs_op.at(i), .operand_2 = rhs_op.at(i), }); try cg.body.emit(cg.module.gpa, .OpExtInst, .{ .id_result_type = arith_op_ty_id, .id_result = overflow_results.at(i), .set = set, .instruction = .{ .inst = @intFromEnum(overflow_inst) }, .id_ref_4 = &.{ lhs_op.at(i), rhs_op.at(i) }, }); } }, .vulkan, .opengl => { // Operations return a struct{T, T} // where T is maybe vectorized. const op_result_ty: Type = .fromInterned(try ip.getTupleType(zcu.gpa, pt.tid, .{ .types = &.{ arith_op_ty.toIntern(), arith_op_ty.toIntern() }, .values = &.{ .none, .none }, })); const op_result_ty_id = try cg.resolveType(op_result_ty, .direct); const opcode: Opcode = switch (signedness) { .signed => .OpSMulExtended, .unsigned => .OpUMulExtended, }; for (0..ops) |i| { const op_result = cg.module.allocId(); try cg.body.emitRaw(cg.module.gpa, opcode, 4); cg.body.writeOperand(Id, op_result_ty_id); cg.body.writeOperand(Id, op_result); cg.body.writeOperand(Id, lhs_op.at(i)); cg.body.writeOperand(Id, rhs_op.at(i)); // The above operation returns a struct. We might want to expand // Temporary to deal with the fact that these are structs eventually, // but for now, take the struct apart and return two separate vectors. try cg.body.emit(cg.module.gpa, .OpCompositeExtract, .{ .id_result_type = arith_op_ty_id, .id_result = value_results.at(i), .composite = op_result, .indexes = &.{0}, }); try cg.body.emit(cg.module.gpa, .OpCompositeExtract, .{ .id_result_type = arith_op_ty_id, .id_result = overflow_results.at(i), .composite = op_result, .indexes = &.{1}, }); } }, else => unreachable, } const result_ty = try v.resultType(cg, lhs.ty); return .{ v.finalize(result_ty, value_results), v.finalize(result_ty, overflow_results), }; } /// The SPIR-V backend is not yet advanced enough to support the std testing infrastructure. /// In order to be able to run tests, we "temporarily" lower test kernels into separate entry- /// points. The test executor will then be able to invoke these to run the tests. /// Note that tests are lowered according to std.builtin.TestFn, which is `fn () anyerror!void`. /// (anyerror!void has the same layout as anyerror). /// Each test declaration generates a function like. /// %anyerror = OpTypeInt 0 16 /// %p_invocation_globals_struct_ty = ... /// %p_anyerror = OpTypePointer CrossWorkgroup %anyerror /// %K = OpTypeFunction %void %p_invocation_globals_struct_ty %p_anyerror /// /// %test = OpFunction %void %K /// %p_invocation_globals = OpFunctionParameter p_invocation_globals_struct_ty /// %p_err = OpFunctionParameter %p_anyerror /// %lbl = OpLabel /// %result = OpFunctionCall %anyerror %func %p_invocation_globals /// OpStore %p_err %result /// OpFunctionEnd /// TODO is to also write out the error as a function call parameter, and to somehow fetch /// the name of an error in the text executor. fn generateTestEntryPoint( cg: *CodeGen, name: []const u8, spv_decl_index: Module.Decl.Index, test_id: Id, ) !void { const gpa = cg.module.gpa; const zcu = cg.module.zcu; const target = cg.module.zcu.getTarget(); const anyerror_ty_id = try cg.resolveType(.anyerror, .direct); const ptr_anyerror_ty = try cg.pt.ptrType(.{ .child = .anyerror_type, .flags = .{ .address_space = .global }, }); const ptr_anyerror_ty_id = try cg.resolveType(ptr_anyerror_ty, .direct); const kernel_id = cg.module.declPtr(spv_decl_index).result_id; const section = &cg.module.sections.functions; const p_error_id = cg.module.allocId(); switch (target.os.tag) { .opencl, .amdhsa => { const void_ty_id = try cg.resolveType(.void, .direct); const kernel_proto_ty_id = try cg.module.functionType(void_ty_id, &.{ptr_anyerror_ty_id}); try section.emit(gpa, .OpFunction, .{ .id_result_type = try cg.resolveType(.void, .direct), .id_result = kernel_id, .function_control = .{}, .function_type = kernel_proto_ty_id, }); try section.emit(gpa, .OpFunctionParameter, .{ .id_result_type = ptr_anyerror_ty_id, .id_result = p_error_id, }); try section.emit(gpa, .OpLabel, .{ .id_result = cg.module.allocId(), }); }, .vulkan, .opengl => { if (cg.module.error_buffer == null) { const spv_err_decl_index = try cg.module.allocDecl(.global); const err_buf_result_id = cg.module.declPtr(spv_err_decl_index).result_id; const buffer_struct_ty_id = try cg.module.structType( &.{anyerror_ty_id}, &.{"error_out"}, null, .none, ); try cg.module.decorate(buffer_struct_ty_id, .block); try cg.module.decorateMember(buffer_struct_ty_id, 0, .{ .offset = .{ .byte_offset = 0 } }); const ptr_buffer_struct_ty_id = cg.module.allocId(); try cg.module.sections.globals.emit(gpa, .OpTypePointer, .{ .id_result = ptr_buffer_struct_ty_id, .storage_class = cg.module.storageClass(.global), .type = buffer_struct_ty_id, }); try cg.module.sections.globals.emit(gpa, .OpVariable, .{ .id_result_type = ptr_buffer_struct_ty_id, .id_result = err_buf_result_id, .storage_class = cg.module.storageClass(.global), }); try cg.module.decorate(err_buf_result_id, .{ .descriptor_set = .{ .descriptor_set = 0 } }); try cg.module.decorate(err_buf_result_id, .{ .binding = .{ .binding_point = 0 } }); cg.module.error_buffer = spv_err_decl_index; } try cg.module.sections.execution_modes.emit(gpa, .OpExecutionMode, .{ .entry_point = kernel_id, .mode = .{ .local_size = .{ .x_size = 1, .y_size = 1, .z_size = 1, } }, }); const void_ty_id = try cg.resolveType(.void, .direct); const kernel_proto_ty_id = try cg.module.functionType(void_ty_id, &.{}); try section.emit(gpa, .OpFunction, .{ .id_result_type = try cg.resolveType(.void, .direct), .id_result = kernel_id, .function_control = .{}, .function_type = kernel_proto_ty_id, }); try section.emit(gpa, .OpLabel, .{ .id_result = cg.module.allocId(), }); const spv_err_decl_index = cg.module.error_buffer.?; const buffer_id = cg.module.declPtr(spv_err_decl_index).result_id; try cg.module.decl_deps.append(gpa, spv_err_decl_index); const zero_id = try cg.constInt(.u32, 0); try section.emit(gpa, .OpInBoundsAccessChain, .{ .id_result_type = ptr_anyerror_ty_id, .id_result = p_error_id, .base = buffer_id, .indexes = &.{zero_id}, }); }, else => unreachable, } const error_id = cg.module.allocId(); try section.emit(gpa, .OpFunctionCall, .{ .id_result_type = anyerror_ty_id, .id_result = error_id, .function = test_id, }); // Note: Convert to direct not required. try section.emit(gpa, .OpStore, .{ .pointer = p_error_id, .object = error_id, .memory_access = .{ .aligned = .{ .literal_integer = @intCast(Type.abiAlignment(.anyerror, zcu).toByteUnits().?) }, }, }); try section.emit(gpa, .OpReturn, {}); try section.emit(gpa, .OpFunctionEnd, {}); // Just generate a quick other name because the intel runtime crashes when the entry- // point name is the same as a different OpName. const test_name = try std.fmt.allocPrint(cg.module.arena, "test {s}", .{name}); const execution_mode: spec.ExecutionModel = switch (target.os.tag) { .vulkan, .opengl => .gl_compute, .opencl, .amdhsa => .kernel, else => unreachable, }; try cg.module.declareEntryPoint(spv_decl_index, test_name, execution_mode, null); } fn intFromBool(cg: *CodeGen, value: Temporary, result_ty: Type) !Temporary { const zero_id = try cg.constInt(result_ty, 0); const one_id = try cg.constInt(result_ty, 1); return try cg.buildSelect( value, Temporary.init(result_ty, one_id), Temporary.init(result_ty, zero_id), ); } /// Convert representation from indirect (in memory) to direct (in 'register') /// This converts the argument type from resolveType(ty, .indirect) to resolveType(ty, .direct). fn convertToDirect(cg: *CodeGen, ty: Type, operand_id: Id) !Id { const pt = cg.pt; const zcu = cg.module.zcu; switch (ty.scalarType(zcu).zigTypeTag(zcu)) { .bool => { const false_id = try cg.constBool(false, .indirect); const operand_ty = blk: { if (!ty.isVector(zcu)) break :blk Type.u1; break :blk try pt.vectorType(.{ .len = ty.vectorLen(zcu), .child = .u1_type, }); }; const result = try cg.buildCmp( .OpINotEqual, Temporary.init(operand_ty, operand_id), Temporary.init(.u1, false_id), ); return try result.materialize(cg); }, else => return operand_id, } } /// Convert representation from direct (in 'register) to direct (in memory) /// This converts the argument type from resolveType(ty, .direct) to resolveType(ty, .indirect). fn convertToIndirect(cg: *CodeGen, ty: Type, operand_id: Id) !Id { const zcu = cg.module.zcu; switch (ty.scalarType(zcu).zigTypeTag(zcu)) { .bool => { const result = try cg.intFromBool(.init(ty, operand_id), .u1); return try result.materialize(cg); }, else => return operand_id, } } fn extractField(cg: *CodeGen, result_ty: Type, object: Id, field: u32) !Id { const result_ty_id = try cg.resolveType(result_ty, .indirect); const result_id = cg.module.allocId(); const indexes = [_]u32{field}; try cg.body.emit(cg.module.gpa, .OpCompositeExtract, .{ .id_result_type = result_ty_id, .id_result = result_id, .composite = object, .indexes = &indexes, }); // Convert bools; direct structs have their field types as indirect values. return try cg.convertToDirect(result_ty, result_id); } fn extractVectorComponent(cg: *CodeGen, result_ty: Type, vector_id: Id, field: u32) !Id { const result_ty_id = try cg.resolveType(result_ty, .direct); const result_id = cg.module.allocId(); const indexes = [_]u32{field}; try cg.body.emit(cg.module.gpa, .OpCompositeExtract, .{ .id_result_type = result_ty_id, .id_result = result_id, .composite = vector_id, .indexes = &indexes, }); // Vector components are already stored in direct representation. return result_id; } const MemoryOptions = struct { is_volatile: bool = false, }; fn load(cg: *CodeGen, value_ty: Type, ptr_id: Id, options: MemoryOptions) !Id { const zcu = cg.module.zcu; const alignment: u32 = @intCast(value_ty.abiAlignment(zcu).toByteUnits().?); const indirect_value_ty_id = try cg.resolveType(value_ty, .indirect); const result_id = cg.module.allocId(); const access: spec.MemoryAccess.Extended = .{ .@"volatile" = options.is_volatile, .aligned = .{ .literal_integer = alignment }, }; try cg.body.emit(cg.module.gpa, .OpLoad, .{ .id_result_type = indirect_value_ty_id, .id_result = result_id, .pointer = ptr_id, .memory_access = access, }); return try cg.convertToDirect(value_ty, result_id); } fn store(cg: *CodeGen, value_ty: Type, ptr_id: Id, value_id: Id, options: MemoryOptions) !void { const indirect_value_id = try cg.convertToIndirect(value_ty, value_id); const access: spec.MemoryAccess.Extended = .{ .@"volatile" = options.is_volatile }; try cg.body.emit(cg.module.gpa, .OpStore, .{ .pointer = ptr_id, .object = indirect_value_id, .memory_access = access, }); } fn genBody(cg: *CodeGen, body: []const Air.Inst.Index) !void { for (body) |inst| { try cg.genInst(inst); } } fn genInst(cg: *CodeGen, inst: Air.Inst.Index) Error!void { const gpa = cg.module.gpa; const zcu = cg.module.zcu; const ip = &zcu.intern_pool; if (cg.liveness.isUnused(inst) and !cg.air.mustLower(inst, ip)) return; const air_tags = cg.air.instructions.items(.tag); const maybe_result_id: ?Id = switch (air_tags[@intFromEnum(inst)]) { // zig fmt: off .add, .add_wrap, .add_optimized => try cg.airArithOp(inst, .OpFAdd, .OpIAdd, .OpIAdd), .sub, .sub_wrap, .sub_optimized => try cg.airArithOp(inst, .OpFSub, .OpISub, .OpISub), .mul, .mul_wrap, .mul_optimized => try cg.airArithOp(inst, .OpFMul, .OpIMul, .OpIMul), .sqrt => try cg.airUnOpSimple(inst, .sqrt), .sin => try cg.airUnOpSimple(inst, .sin), .cos => try cg.airUnOpSimple(inst, .cos), .tan => try cg.airUnOpSimple(inst, .tan), .exp => try cg.airUnOpSimple(inst, .exp), .exp2 => try cg.airUnOpSimple(inst, .exp2), .log => try cg.airUnOpSimple(inst, .log), .log2 => try cg.airUnOpSimple(inst, .log2), .log10 => try cg.airUnOpSimple(inst, .log10), .abs => try cg.airAbs(inst), .floor => try cg.airUnOpSimple(inst, .floor), .ceil => try cg.airUnOpSimple(inst, .ceil), .round => try cg.airUnOpSimple(inst, .round), .trunc_float => try cg.airUnOpSimple(inst, .trunc), .neg, .neg_optimized => try cg.airUnOpSimple(inst, .f_neg), .div_float, .div_float_optimized => try cg.airArithOp(inst, .OpFDiv, .OpSDiv, .OpUDiv), .div_floor, .div_floor_optimized => try cg.airDivFloor(inst), .div_trunc, .div_trunc_optimized => try cg.airDivTrunc(inst), .rem, .rem_optimized => try cg.airArithOp(inst, .OpFRem, .OpSRem, .OpUMod), .mod, .mod_optimized => try cg.airArithOp(inst, .OpFMod, .OpSMod, .OpUMod), .add_with_overflow => try cg.airAddSubOverflow(inst, .OpIAdd, .OpULessThan, .OpSLessThan), .sub_with_overflow => try cg.airAddSubOverflow(inst, .OpISub, .OpUGreaterThan, .OpSGreaterThan), .mul_with_overflow => try cg.airMulOverflow(inst), .shl_with_overflow => try cg.airShlOverflow(inst), .mul_add => try cg.airMulAdd(inst), .ctz => try cg.airClzCtz(inst, .ctz), .clz => try cg.airClzCtz(inst, .clz), .select => try cg.airSelect(inst), .splat => try cg.airSplat(inst), .reduce, .reduce_optimized => try cg.airReduce(inst), .shuffle_one => try cg.airShuffleOne(inst), .shuffle_two => try cg.airShuffleTwo(inst), .ptr_add => try cg.airPtrAdd(inst), .ptr_sub => try cg.airPtrSub(inst), .bit_and => try cg.airBinOpSimple(inst, .OpBitwiseAnd), .bit_or => try cg.airBinOpSimple(inst, .OpBitwiseOr), .xor => try cg.airBinOpSimple(inst, .OpBitwiseXor), .bool_and => try cg.airBinOpSimple(inst, .OpLogicalAnd), .bool_or => try cg.airBinOpSimple(inst, .OpLogicalOr), .shl, .shl_exact => try cg.airShift(inst, .OpShiftLeftLogical, .OpShiftLeftLogical), .shr, .shr_exact => try cg.airShift(inst, .OpShiftRightLogical, .OpShiftRightArithmetic), .min => try cg.airMinMax(inst, .min), .max => try cg.airMinMax(inst, .max), .bitcast => try cg.airBitCast(inst), .intcast, .trunc => try cg.airIntCast(inst), .float_from_int => try cg.airFloatFromInt(inst), .int_from_float => try cg.airIntFromFloat(inst), .fpext, .fptrunc => try cg.airFloatCast(inst), .not => try cg.airNot(inst), .array_to_slice => try cg.airArrayToSlice(inst), .slice => try cg.airSlice(inst), .aggregate_init => try cg.airAggregateInit(inst), .memcpy => return cg.airMemcpy(inst), .memmove => return cg.airMemmove(inst), .slice_ptr => try cg.airSliceField(inst, 0), .slice_len => try cg.airSliceField(inst, 1), .slice_elem_ptr => try cg.airSliceElemPtr(inst), .slice_elem_val => try cg.airSliceElemVal(inst), .ptr_elem_ptr => try cg.airPtrElemPtr(inst), .ptr_elem_val => try cg.airPtrElemVal(inst), .array_elem_val => try cg.airArrayElemVal(inst), .vector_store_elem => return cg.airVectorStoreElem(inst), .set_union_tag => return cg.airSetUnionTag(inst), .get_union_tag => try cg.airGetUnionTag(inst), .union_init => try cg.airUnionInit(inst), .struct_field_val => try cg.airStructFieldVal(inst), .field_parent_ptr => try cg.airFieldParentPtr(inst), .struct_field_ptr_index_0 => try cg.airStructFieldPtrIndex(inst, 0), .struct_field_ptr_index_1 => try cg.airStructFieldPtrIndex(inst, 1), .struct_field_ptr_index_2 => try cg.airStructFieldPtrIndex(inst, 2), .struct_field_ptr_index_3 => try cg.airStructFieldPtrIndex(inst, 3), .cmp_eq => try cg.airCmp(inst, .eq), .cmp_neq => try cg.airCmp(inst, .neq), .cmp_gt => try cg.airCmp(inst, .gt), .cmp_gte => try cg.airCmp(inst, .gte), .cmp_lt => try cg.airCmp(inst, .lt), .cmp_lte => try cg.airCmp(inst, .lte), .cmp_vector => try cg.airVectorCmp(inst), .arg => cg.airArg(), .alloc => try cg.airAlloc(inst), // TODO: We probably need to have a special implementation of this for the C abi. .ret_ptr => try cg.airAlloc(inst), .block => try cg.airBlock(inst), .load => try cg.airLoad(inst), .store, .store_safe => return cg.airStore(inst), .br => return cg.airBr(inst), // For now just ignore this instruction. This effectively falls back on the old implementation, // this doesn't change anything for us. .repeat => return, .breakpoint => return, .cond_br => return cg.airCondBr(inst), .loop => return cg.airLoop(inst), .ret => return cg.airRet(inst), .ret_safe => return cg.airRet(inst), // TODO .ret_load => return cg.airRetLoad(inst), .@"try" => try cg.airTry(inst), .switch_br => return cg.airSwitchBr(inst), .unreach, .trap => return cg.airUnreach(), .dbg_empty_stmt => return, .dbg_stmt => return cg.airDbgStmt(inst), .dbg_inline_block => try cg.airDbgInlineBlock(inst), .dbg_var_ptr, .dbg_var_val, .dbg_arg_inline => return cg.airDbgVar(inst), .unwrap_errunion_err => try cg.airErrUnionErr(inst), .unwrap_errunion_payload => try cg.airErrUnionPayload(inst), .wrap_errunion_err => try cg.airWrapErrUnionErr(inst), .wrap_errunion_payload => try cg.airWrapErrUnionPayload(inst), .is_null => try cg.airIsNull(inst, false, .is_null), .is_non_null => try cg.airIsNull(inst, false, .is_non_null), .is_null_ptr => try cg.airIsNull(inst, true, .is_null), .is_non_null_ptr => try cg.airIsNull(inst, true, .is_non_null), .is_err => try cg.airIsErr(inst, .is_err), .is_non_err => try cg.airIsErr(inst, .is_non_err), .optional_payload => try cg.airUnwrapOptional(inst), .optional_payload_ptr => try cg.airUnwrapOptionalPtr(inst), .wrap_optional => try cg.airWrapOptional(inst), .assembly => try cg.airAssembly(inst), .call => try cg.airCall(inst, .auto), .call_always_tail => try cg.airCall(inst, .always_tail), .call_never_tail => try cg.airCall(inst, .never_tail), .call_never_inline => try cg.airCall(inst, .never_inline), .work_item_id => try cg.airWorkItemId(inst), .work_group_size => try cg.airWorkGroupSize(inst), .work_group_id => try cg.airWorkGroupId(inst), // zig fmt: on else => |tag| return cg.todo("implement AIR tag {s}", .{@tagName(tag)}), }; const result_id = maybe_result_id orelse return; try cg.inst_results.putNoClobber(gpa, inst, result_id); } fn airBinOpSimple(cg: *CodeGen, inst: Air.Inst.Index, op: Opcode) !?Id { const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op; const lhs = try cg.temporary(bin_op.lhs); const rhs = try cg.temporary(bin_op.rhs); const result = try cg.buildBinary(op, lhs, rhs); return try result.materialize(cg); } fn airShift(cg: *CodeGen, inst: Air.Inst.Index, unsigned: Opcode, signed: Opcode) !?Id { const zcu = cg.module.zcu; const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op; if (cg.typeOf(bin_op.lhs).isVector(zcu) and !cg.typeOf(bin_op.rhs).isVector(zcu)) { return cg.fail("vector shift with scalar rhs", .{}); } const base = try cg.temporary(bin_op.lhs); const shift = try cg.temporary(bin_op.rhs); const result_ty = cg.typeOfIndex(inst); const info = cg.arithmeticTypeInfo(result_ty); switch (info.class) { .composite_integer => return cg.todo("shift ops for composite integers", .{}), .integer, .strange_integer => {}, .float, .bool => unreachable, } // Sometimes Zig doesn't make both of the arguments the same types here. SPIR-V expects that, // so just manually upcast it if required. // Note: The sign may differ here between the shift and the base type, in case // of an arithmetic right shift. SPIR-V still expects the same type, // so in that case we have to cast convert to signed. const casted_shift = try cg.buildConvert(base.ty.scalarType(zcu), shift); const shifted = switch (info.signedness) { .unsigned => try cg.buildBinary(unsigned, base, casted_shift), .signed => try cg.buildBinary(signed, base, casted_shift), }; const result = try cg.normalize(shifted, info); return try result.materialize(cg); } const MinMax = enum { min, max, pub fn extInstOpcode( op: MinMax, target: *const std.Target, info: ArithmeticTypeInfo, ) u32 { return switch (target.os.tag) { .opencl => @intFromEnum(@as(spec.OpenClOpcode, switch (info.class) { .float => switch (op) { .min => .fmin, .max => .fmax, }, .integer, .strange_integer, .composite_integer => switch (info.signedness) { .signed => switch (op) { .min => .s_min, .max => .s_max, }, .unsigned => switch (op) { .min => .u_min, .max => .u_max, }, }, .bool => unreachable, })), .vulkan, .opengl => @intFromEnum(@as(spec.GlslOpcode, switch (info.class) { .float => switch (op) { .min => .FMin, .max => .FMax, }, .integer, .strange_integer, .composite_integer => switch (info.signedness) { .signed => switch (op) { .min => .SMin, .max => .SMax, }, .unsigned => switch (op) { .min => .UMin, .max => .UMax, }, }, .bool => unreachable, })), else => unreachable, }; } }; fn airMinMax(cg: *CodeGen, inst: Air.Inst.Index, op: MinMax) !?Id { const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op; const lhs = try cg.temporary(bin_op.lhs); const rhs = try cg.temporary(bin_op.rhs); const result = try cg.minMax(lhs, rhs, op); return try result.materialize(cg); } fn minMax(cg: *CodeGen, lhs: Temporary, rhs: Temporary, op: MinMax) !Temporary { const zcu = cg.module.zcu; const target = zcu.getTarget(); const info = cg.arithmeticTypeInfo(lhs.ty); const v = cg.vectorization(.{ lhs, rhs }); const ops = v.components(); const results = cg.module.allocIds(ops); const op_result_ty = lhs.ty.scalarType(zcu); const op_result_ty_id = try cg.resolveType(op_result_ty, .direct); const result_ty = try v.resultType(cg, lhs.ty); const op_lhs = try v.prepare(cg, lhs); const op_rhs = try v.prepare(cg, rhs); const set = try cg.importExtendedSet(); const opcode = op.extInstOpcode(target, info); for (0..ops) |i| { try cg.body.emit(cg.module.gpa, .OpExtInst, .{ .id_result_type = op_result_ty_id, .id_result = results.at(i), .set = set, .instruction = .{ .inst = opcode }, .id_ref_4 = &.{ op_lhs.at(i), op_rhs.at(i) }, }); } return v.finalize(result_ty, results); } /// This function normalizes values to a canonical representation /// after some arithmetic operation. This mostly consists of wrapping /// behavior for strange integers: /// - Unsigned integers are bitwise masked with a mask that only passes /// the valid bits through. /// - Signed integers are also sign extended if they are negative. /// All other values are returned unmodified (this makes strange integer /// wrapping easier to use in generic operations). fn normalize(cg: *CodeGen, value: Temporary, info: ArithmeticTypeInfo) !Temporary { const zcu = cg.module.zcu; const ty = value.ty; switch (info.class) { .composite_integer, .integer, .bool, .float => return value, .strange_integer => switch (info.signedness) { .unsigned => { const mask_value = @as(u64, std.math.maxInt(u64)) >> @as(u6, @intCast(64 - info.bits)); const mask_id = try cg.constInt(ty.scalarType(zcu), mask_value); return try cg.buildBinary(.OpBitwiseAnd, value, Temporary.init(ty.scalarType(zcu), mask_id)); }, .signed => { // Shift left and right so that we can copy the sight bit that way. const shift_amt_id = try cg.constInt(ty.scalarType(zcu), info.backing_bits - info.bits); const shift_amt: Temporary = .init(ty.scalarType(zcu), shift_amt_id); const left = try cg.buildBinary(.OpShiftLeftLogical, value, shift_amt); return try cg.buildBinary(.OpShiftRightArithmetic, left, shift_amt); }, }, } } fn airDivFloor(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op; const lhs = try cg.temporary(bin_op.lhs); const rhs = try cg.temporary(bin_op.rhs); const info = cg.arithmeticTypeInfo(lhs.ty); switch (info.class) { .composite_integer => unreachable, // TODO .integer, .strange_integer => { switch (info.signedness) { .unsigned => { const result = try cg.buildBinary(.OpUDiv, lhs, rhs); return try result.materialize(cg); }, .signed => {}, } // For signed integers: // (a / b) - (a % b != 0 && a < 0 != b < 0); // There shouldn't be any overflow issues. const div = try cg.buildBinary(.OpSDiv, lhs, rhs); const rem = try cg.buildBinary(.OpSRem, lhs, rhs); const zero: Temporary = .init(lhs.ty, try cg.constInt(lhs.ty, 0)); const rem_non_zero = try cg.buildCmp(.OpINotEqual, rem, zero); const lhs_rhs_xor = try cg.buildBinary(.OpBitwiseXor, lhs, rhs); const signs_differ = try cg.buildCmp(.OpSLessThan, lhs_rhs_xor, zero); const adjust = try cg.buildBinary(.OpLogicalAnd, rem_non_zero, signs_differ); const result = try cg.buildBinary(.OpISub, div, try cg.intFromBool(adjust, div.ty)); return try result.materialize(cg); }, .float => { const div = try cg.buildBinary(.OpFDiv, lhs, rhs); const result = try cg.buildUnary(.floor, div); return try result.materialize(cg); }, .bool => unreachable, } } fn airDivTrunc(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op; const lhs = try cg.temporary(bin_op.lhs); const rhs = try cg.temporary(bin_op.rhs); const info = cg.arithmeticTypeInfo(lhs.ty); switch (info.class) { .composite_integer => unreachable, // TODO .integer, .strange_integer => switch (info.signedness) { .unsigned => { const result = try cg.buildBinary(.OpUDiv, lhs, rhs); return try result.materialize(cg); }, .signed => { const result = try cg.buildBinary(.OpSDiv, lhs, rhs); return try result.materialize(cg); }, }, .float => { const div = try cg.buildBinary(.OpFDiv, lhs, rhs); const result = try cg.buildUnary(.trunc, div); return try result.materialize(cg); }, .bool => unreachable, } } fn airUnOpSimple(cg: *CodeGen, inst: Air.Inst.Index, op: UnaryOp) !?Id { const un_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op; const operand = try cg.temporary(un_op); const result = try cg.buildUnary(op, operand); return try result.materialize(cg); } fn airArithOp( cg: *CodeGen, inst: Air.Inst.Index, comptime fop: Opcode, comptime sop: Opcode, comptime uop: Opcode, ) !?Id { const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op; const lhs = try cg.temporary(bin_op.lhs); const rhs = try cg.temporary(bin_op.rhs); const info = cg.arithmeticTypeInfo(lhs.ty); const result = switch (info.class) { .composite_integer => unreachable, // TODO .integer, .strange_integer => switch (info.signedness) { .signed => try cg.buildBinary(sop, lhs, rhs), .unsigned => try cg.buildBinary(uop, lhs, rhs), }, .float => try cg.buildBinary(fop, lhs, rhs), .bool => unreachable, }; return try result.materialize(cg); } fn airAbs(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const operand = try cg.temporary(ty_op.operand); // Note: operand_ty may be signed, while ty is always unsigned! const result_ty = cg.typeOfIndex(inst); const result = try cg.abs(result_ty, operand); return try result.materialize(cg); } fn abs(cg: *CodeGen, result_ty: Type, value: Temporary) !Temporary { const zcu = cg.module.zcu; const target = cg.module.zcu.getTarget(); const operand_info = cg.arithmeticTypeInfo(value.ty); switch (operand_info.class) { .float => return try cg.buildUnary(.f_abs, value), .integer, .strange_integer => { const abs_value = try cg.buildUnary(.i_abs, value); switch (target.os.tag) { .vulkan, .opengl => { if (value.ty.intInfo(zcu).signedness == .signed) { return cg.todo("perform bitcast after @abs", .{}); } }, else => {}, } return try cg.normalize(abs_value, cg.arithmeticTypeInfo(result_ty)); }, .composite_integer => unreachable, // TODO .bool => unreachable, } } fn airAddSubOverflow( cg: *CodeGen, inst: Air.Inst.Index, comptime add: Opcode, u_opcode: Opcode, s_opcode: Opcode, ) !?Id { // Note: OpIAddCarry and OpISubBorrow are not really useful here: For unsigned numbers, // there is in both cases only one extra operation required. For signed operations, // the overflow bit is set then going from 0x80.. to 0x00.., but this doesn't actually // normally set a carry bit. So the SPIR-V overflow operations are not particularly // useful here. _ = s_opcode; const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl; const extra = cg.air.extraData(Air.Bin, ty_pl.payload).data; const lhs = try cg.temporary(extra.lhs); const rhs = try cg.temporary(extra.rhs); const result_ty = cg.typeOfIndex(inst); const info = cg.arithmeticTypeInfo(lhs.ty); switch (info.class) { .composite_integer => unreachable, // TODO .strange_integer, .integer => {}, .float, .bool => unreachable, } const sum = try cg.buildBinary(add, lhs, rhs); const result = try cg.normalize(sum, info); const overflowed = switch (info.signedness) { // Overflow happened if the result is smaller than either of the operands. It doesn't matter which. // For subtraction the conditions need to be swapped. .unsigned => try cg.buildCmp(u_opcode, result, lhs), // For signed operations, we check the signs of the operands and the result. .signed => blk: { // Signed overflow detection using the sign bits of the operands and the result. // For addition (a + b), overflow occurs if the operands have the same sign // and the result's sign is different from the operands' sign. // (sign(a) == sign(b)) && (sign(a) != sign(result)) // For subtraction (a - b), overflow occurs if the operands have different signs // and the result's sign is different from the minuend's (a's) sign. // (sign(a) != sign(b)) && (sign(a) != sign(result)) const zero: Temporary = .init(rhs.ty, try cg.constInt(rhs.ty, 0)); const lhs_is_neg = try cg.buildCmp(.OpSLessThan, lhs, zero); const rhs_is_neg = try cg.buildCmp(.OpSLessThan, rhs, zero); const result_is_neg = try cg.buildCmp(.OpSLessThan, result, zero); const signs_match = try cg.buildCmp(.OpLogicalEqual, lhs_is_neg, rhs_is_neg); const result_sign_differs = try cg.buildCmp(.OpLogicalNotEqual, lhs_is_neg, result_is_neg); const overflow_condition = switch (add) { .OpIAdd => signs_match, .OpISub => try cg.buildUnary(.l_not, signs_match), else => unreachable, }; break :blk try cg.buildCmp(.OpLogicalAnd, overflow_condition, result_sign_differs); }, }; const ov = try cg.intFromBool(overflowed, .u1); const result_ty_id = try cg.resolveType(result_ty, .direct); return try cg.constructComposite(result_ty_id, &.{ try result.materialize(cg), try ov.materialize(cg) }); } fn airMulOverflow(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const pt = cg.pt; const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl; const extra = cg.air.extraData(Air.Bin, ty_pl.payload).data; const lhs = try cg.temporary(extra.lhs); const rhs = try cg.temporary(extra.rhs); const result_ty = cg.typeOfIndex(inst); const info = cg.arithmeticTypeInfo(lhs.ty); switch (info.class) { .composite_integer => unreachable, // TODO .strange_integer, .integer => {}, .float, .bool => unreachable, } // There are 3 cases which we have to deal with: // - If info.bits < 32 / 2, we will upcast to 32 and check the higher bits // - If info.bits > 32 / 2, we have to use extended multiplication // - Additionally, if info.bits != 32, we'll have to check the high bits // of the result too. const largest_int_bits = cg.largestSupportedIntBits(); // If non-null, the number of bits that the multiplication should be performed in. If // null, we have to use wide multiplication. const maybe_op_ty_bits: ?u16 = switch (info.bits) { 0 => unreachable, 1...16 => 32, 17...32 => if (largest_int_bits > 32) 64 else null, // Upcast if we can. 33...64 => null, // Always use wide multiplication. else => unreachable, // TODO: Composite integers }; const result, const overflowed = switch (info.signedness) { .unsigned => blk: { if (maybe_op_ty_bits) |op_ty_bits| { const op_ty = try pt.intType(.unsigned, op_ty_bits); const casted_lhs = try cg.buildConvert(op_ty, lhs); const casted_rhs = try cg.buildConvert(op_ty, rhs); const full_result = try cg.buildBinary(.OpIMul, casted_lhs, casted_rhs); const low_bits = try cg.buildConvert(lhs.ty, full_result); const result = try cg.normalize(low_bits, info); // Shift the result bits away to get the overflow bits. const shift: Temporary = .init(full_result.ty, try cg.constInt(full_result.ty, info.bits)); const overflow = try cg.buildBinary(.OpShiftRightLogical, full_result, shift); // Directly check if its zero in the op_ty without converting first. const zero: Temporary = .init(full_result.ty, try cg.constInt(full_result.ty, 0)); const overflowed = try cg.buildCmp(.OpINotEqual, zero, overflow); break :blk .{ result, overflowed }; } const low_bits, const high_bits = try cg.buildWideMul(.unsigned, lhs, rhs); // Truncate the result, if required. const result = try cg.normalize(low_bits, info); // Overflow happened if the high-bits of the result are non-zero OR if the // high bits of the low word of the result (those outside the range of the // int) are nonzero. const zero: Temporary = .init(lhs.ty, try cg.constInt(lhs.ty, 0)); const high_overflowed = try cg.buildCmp(.OpINotEqual, zero, high_bits); // If no overflow bits in low_bits, no extra work needs to be done. if (info.backing_bits == info.bits) break :blk .{ result, high_overflowed }; // Shift the result bits away to get the overflow bits. const shift: Temporary = .init(lhs.ty, try cg.constInt(lhs.ty, info.bits)); const low_overflow = try cg.buildBinary(.OpShiftRightLogical, low_bits, shift); const low_overflowed = try cg.buildCmp(.OpINotEqual, zero, low_overflow); const overflowed = try cg.buildCmp(.OpLogicalOr, low_overflowed, high_overflowed); break :blk .{ result, overflowed }; }, .signed => blk: { // - lhs >= 0, rhxs >= 0: expect positive; overflow should be 0 // - lhs == 0 : expect positive; overflow should be 0 // - rhs == 0: expect positive; overflow should be 0 // - lhs > 0, rhs < 0: expect negative; overflow should be -1 // - lhs < 0, rhs > 0: expect negative; overflow should be -1 // - lhs <= 0, rhs <= 0: expect positive; overflow should be 0 // ------ // overflow should be -1 when // (lhs > 0 && rhs < 0) || (lhs < 0 && rhs > 0) const zero: Temporary = .init(lhs.ty, try cg.constInt(lhs.ty, 0)); const lhs_negative = try cg.buildCmp(.OpSLessThan, lhs, zero); const rhs_negative = try cg.buildCmp(.OpSLessThan, rhs, zero); const lhs_positive = try cg.buildCmp(.OpSGreaterThan, lhs, zero); const rhs_positive = try cg.buildCmp(.OpSGreaterThan, rhs, zero); // Set to `true` if we expect -1. const expected_overflow_bit = try cg.buildBinary( .OpLogicalOr, try cg.buildCmp(.OpLogicalAnd, lhs_positive, rhs_negative), try cg.buildCmp(.OpLogicalAnd, lhs_negative, rhs_positive), ); if (maybe_op_ty_bits) |op_ty_bits| { const op_ty = try pt.intType(.signed, op_ty_bits); // Assume normalized; sign bit is set. We want a sign extend. const casted_lhs = try cg.buildConvert(op_ty, lhs); const casted_rhs = try cg.buildConvert(op_ty, rhs); const full_result = try cg.buildBinary(.OpIMul, casted_lhs, casted_rhs); // Truncate to the result type. const low_bits = try cg.buildConvert(lhs.ty, full_result); const result = try cg.normalize(low_bits, info); // Now, we need to check the overflow bits AND the sign // bit for the expected overflow bits. // To do that, shift out everything bit the sign bit and // then check what remains. const shift: Temporary = .init(full_result.ty, try cg.constInt(full_result.ty, info.bits - 1)); // Use SRA so that any sign bits are duplicated. Now we can just check if ALL bits are set // for negative cases. const overflow = try cg.buildBinary(.OpShiftRightArithmetic, full_result, shift); const long_all_set: Temporary = .init(full_result.ty, try cg.constInt(full_result.ty, -1)); const long_zero: Temporary = .init(full_result.ty, try cg.constInt(full_result.ty, 0)); const mask = try cg.buildSelect(expected_overflow_bit, long_all_set, long_zero); const overflowed = try cg.buildCmp(.OpINotEqual, mask, overflow); break :blk .{ result, overflowed }; } const low_bits, const high_bits = try cg.buildWideMul(.signed, lhs, rhs); // Truncate result if required. const result = try cg.normalize(low_bits, info); const all_set: Temporary = .init(lhs.ty, try cg.constInt(lhs.ty, -1)); const mask = try cg.buildSelect(expected_overflow_bit, all_set, zero); // Like with unsigned, overflow happened if high_bits are not the ones we expect, // and we also need to check some ones from the low bits. const high_overflowed = try cg.buildCmp(.OpINotEqual, mask, high_bits); // If no overflow bits in low_bits, no extra work needs to be done. // Careful, we still have to check the sign bit, so this branch // only goes for i33 and such. if (info.backing_bits == info.bits + 1) break :blk .{ result, high_overflowed }; // Shift the result bits away to get the overflow bits. const shift: Temporary = .init(lhs.ty, try cg.constInt(lhs.ty, info.bits - 1)); // Use SRA so that any sign bits are duplicated. Now we can just check if ALL bits are set // for negative cases. const low_overflow = try cg.buildBinary(.OpShiftRightArithmetic, low_bits, shift); const low_overflowed = try cg.buildCmp(.OpINotEqual, mask, low_overflow); const overflowed = try cg.buildCmp(.OpLogicalOr, low_overflowed, high_overflowed); break :blk .{ result, overflowed }; }, }; const ov = try cg.intFromBool(overflowed, .u1); const result_ty_id = try cg.resolveType(result_ty, .direct); return try cg.constructComposite(result_ty_id, &.{ try result.materialize(cg), try ov.materialize(cg) }); } fn airShlOverflow(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl; const extra = cg.air.extraData(Air.Bin, ty_pl.payload).data; if (cg.typeOf(extra.lhs).isVector(zcu) and !cg.typeOf(extra.rhs).isVector(zcu)) { return cg.fail("vector shift with scalar rhs", .{}); } const base = try cg.temporary(extra.lhs); const shift = try cg.temporary(extra.rhs); const result_ty = cg.typeOfIndex(inst); const info = cg.arithmeticTypeInfo(base.ty); switch (info.class) { .composite_integer => unreachable, // TODO .integer, .strange_integer => {}, .float, .bool => unreachable, } // Sometimes Zig doesn't make both of the arguments the same types here. SPIR-V expects that, // so just manually upcast it if required. const casted_shift = try cg.buildConvert(base.ty.scalarType(zcu), shift); const left = try cg.buildBinary(.OpShiftLeftLogical, base, casted_shift); const result = try cg.normalize(left, info); const right = switch (info.signedness) { .unsigned => try cg.buildBinary(.OpShiftRightLogical, result, casted_shift), .signed => try cg.buildBinary(.OpShiftRightArithmetic, result, casted_shift), }; const overflowed = try cg.buildCmp(.OpINotEqual, base, right); const ov = try cg.intFromBool(overflowed, .u1); const result_ty_id = try cg.resolveType(result_ty, .direct); return try cg.constructComposite(result_ty_id, &.{ try result.materialize(cg), try ov.materialize(cg) }); } fn airMulAdd(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op; const extra = cg.air.extraData(Air.Bin, pl_op.payload).data; const a = try cg.temporary(extra.lhs); const b = try cg.temporary(extra.rhs); const c = try cg.temporary(pl_op.operand); const result_ty = cg.typeOfIndex(inst); const info = cg.arithmeticTypeInfo(result_ty); assert(info.class == .float); // .mul_add is only emitted for floats const result = try cg.buildFma(a, b, c); return try result.materialize(cg); } fn airClzCtz(cg: *CodeGen, inst: Air.Inst.Index, op: UnaryOp) !?Id { if (cg.liveness.isUnused(inst)) return null; const zcu = cg.module.zcu; const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const operand = try cg.temporary(ty_op.operand); const scalar_result_ty = cg.typeOfIndex(inst).scalarType(zcu); const info = cg.arithmeticTypeInfo(operand.ty); switch (info.class) { .composite_integer => unreachable, // TODO .integer, .strange_integer => {}, .float, .bool => unreachable, } const count = try cg.buildUnary(op, operand); // Result of OpenCL ctz/clz returns operand.ty, and we want result_ty. // result_ty is always large enough to hold the result, so we might have to down // cast it. const result = try cg.buildConvert(scalar_result_ty, count); return try result.materialize(cg); } fn airSelect(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op; const extra = cg.air.extraData(Air.Bin, pl_op.payload).data; const pred = try cg.temporary(pl_op.operand); const a = try cg.temporary(extra.lhs); const b = try cg.temporary(extra.rhs); const result = try cg.buildSelect(pred, a, b); return try result.materialize(cg); } fn airSplat(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const operand_id = try cg.resolve(ty_op.operand); const result_ty = cg.typeOfIndex(inst); return try cg.constructCompositeSplat(result_ty, operand_id); } fn airReduce(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const reduce = cg.air.instructions.items(.data)[@intFromEnum(inst)].reduce; const operand = try cg.resolve(reduce.operand); const operand_ty = cg.typeOf(reduce.operand); const scalar_ty = operand_ty.scalarType(zcu); const scalar_ty_id = try cg.resolveType(scalar_ty, .direct); const info = cg.arithmeticTypeInfo(operand_ty); const len = operand_ty.vectorLen(zcu); const first = try cg.extractVectorComponent(scalar_ty, operand, 0); switch (reduce.operation) { .Min, .Max => |op| { var result: Temporary = .init(scalar_ty, first); const cmp_op: MinMax = switch (op) { .Max => .max, .Min => .min, else => unreachable, }; for (1..len) |i| { const lhs = result; const rhs_id = try cg.extractVectorComponent(scalar_ty, operand, @intCast(i)); const rhs: Temporary = .init(scalar_ty, rhs_id); result = try cg.minMax(lhs, rhs, cmp_op); } return try result.materialize(cg); }, else => {}, } var result_id = first; const opcode: Opcode = switch (info.class) { .bool => switch (reduce.operation) { .And => .OpLogicalAnd, .Or => .OpLogicalOr, .Xor => .OpLogicalNotEqual, else => unreachable, }, .strange_integer, .integer => switch (reduce.operation) { .And => .OpBitwiseAnd, .Or => .OpBitwiseOr, .Xor => .OpBitwiseXor, .Add => .OpIAdd, .Mul => .OpIMul, else => unreachable, }, .float => switch (reduce.operation) { .Add => .OpFAdd, .Mul => .OpFMul, else => unreachable, }, .composite_integer => unreachable, // TODO }; for (1..len) |i| { const lhs = result_id; const rhs = try cg.extractVectorComponent(scalar_ty, operand, @intCast(i)); result_id = cg.module.allocId(); try cg.body.emitRaw(cg.module.gpa, opcode, 4); cg.body.writeOperand(Id, scalar_ty_id); cg.body.writeOperand(Id, result_id); cg.body.writeOperand(Id, lhs); cg.body.writeOperand(Id, rhs); } return result_id; } fn airShuffleOne(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const gpa = zcu.gpa; const unwrapped = cg.air.unwrapShuffleOne(zcu, inst); const mask = unwrapped.mask; const result_ty = unwrapped.result_ty; const elem_ty = result_ty.childType(zcu); const operand = try cg.resolve(unwrapped.operand); const scratch_top = cg.id_scratch.items.len; defer cg.id_scratch.shrinkRetainingCapacity(scratch_top); const constituents = try cg.id_scratch.addManyAsSlice(gpa, mask.len); for (constituents, mask) |*id, mask_elem| { id.* = switch (mask_elem.unwrap()) { .elem => |idx| try cg.extractVectorComponent(elem_ty, operand, idx), .value => |val| try cg.constant(elem_ty, .fromInterned(val), .direct), }; } const result_ty_id = try cg.resolveType(result_ty, .direct); return try cg.constructComposite(result_ty_id, constituents); } fn airShuffleTwo(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const gpa = zcu.gpa; const unwrapped = cg.air.unwrapShuffleTwo(zcu, inst); const mask = unwrapped.mask; const result_ty = unwrapped.result_ty; const elem_ty = result_ty.childType(zcu); const elem_ty_id = try cg.resolveType(elem_ty, .direct); const operand_a = try cg.resolve(unwrapped.operand_a); const operand_b = try cg.resolve(unwrapped.operand_b); const scratch_top = cg.id_scratch.items.len; defer cg.id_scratch.shrinkRetainingCapacity(scratch_top); const constituents = try cg.id_scratch.addManyAsSlice(gpa, mask.len); for (constituents, mask) |*id, mask_elem| { id.* = switch (mask_elem.unwrap()) { .a_elem => |idx| try cg.extractVectorComponent(elem_ty, operand_a, idx), .b_elem => |idx| try cg.extractVectorComponent(elem_ty, operand_b, idx), .undef => try cg.module.constUndef(elem_ty_id), }; } const result_ty_id = try cg.resolveType(result_ty, .direct); return try cg.constructComposite(result_ty_id, constituents); } fn accessChainId( cg: *CodeGen, result_ty_id: Id, base: Id, indices: []const Id, ) !Id { const result_id = cg.module.allocId(); try cg.body.emit(cg.module.gpa, .OpInBoundsAccessChain, .{ .id_result_type = result_ty_id, .id_result = result_id, .base = base, .indexes = indices, }); return result_id; } /// AccessChain is essentially PtrAccessChain with 0 as initial argument. The effective /// difference lies in whether the resulting type of the first dereference will be the /// same as that of the base pointer, or that of a dereferenced base pointer. AccessChain /// is the latter and PtrAccessChain is the former. fn accessChain( cg: *CodeGen, result_ty_id: Id, base: Id, indices: []const u32, ) !Id { const gpa = cg.module.gpa; const scratch_top = cg.id_scratch.items.len; defer cg.id_scratch.shrinkRetainingCapacity(scratch_top); const ids = try cg.id_scratch.addManyAsSlice(gpa, indices.len); for (indices, ids) |index, *id| { id.* = try cg.constInt(.u32, index); } return try cg.accessChainId(result_ty_id, base, ids); } fn ptrAccessChain( cg: *CodeGen, result_ty_id: Id, base: Id, element: Id, indices: []const u32, ) !Id { const gpa = cg.module.gpa; const target = cg.module.zcu.getTarget(); const scratch_top = cg.id_scratch.items.len; defer cg.id_scratch.shrinkRetainingCapacity(scratch_top); const ids = try cg.id_scratch.addManyAsSlice(gpa, indices.len); for (indices, ids) |index, *id| { id.* = try cg.constInt(.u32, index); } const result_id = cg.module.allocId(); switch (target.os.tag) { .opencl, .amdhsa => { try cg.body.emit(gpa, .OpInBoundsPtrAccessChain, .{ .id_result_type = result_ty_id, .id_result = result_id, .base = base, .element = element, .indexes = ids, }); }, .vulkan, .opengl => { try cg.body.emit(gpa, .OpPtrAccessChain, .{ .id_result_type = result_ty_id, .id_result = result_id, .base = base, .element = element, .indexes = ids, }); }, else => unreachable, } return result_id; } fn ptrAdd(cg: *CodeGen, result_ty: Type, ptr_ty: Type, ptr_id: Id, offset_id: Id) !Id { const zcu = cg.module.zcu; const result_ty_id = try cg.resolveType(result_ty, .direct); switch (ptr_ty.ptrSize(zcu)) { .one => { // Pointer to array // TODO: Is this correct? return try cg.accessChainId(result_ty_id, ptr_id, &.{offset_id}); }, .c, .many => { return try cg.ptrAccessChain(result_ty_id, ptr_id, offset_id, &.{}); }, .slice => { // TODO: This is probably incorrect. A slice should be returned here, though this is what llvm does. const slice_ptr_id = try cg.extractField(result_ty, ptr_id, 0); return try cg.ptrAccessChain(result_ty_id, slice_ptr_id, offset_id, &.{}); }, } } fn airPtrAdd(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl; const bin_op = cg.air.extraData(Air.Bin, ty_pl.payload).data; const ptr_id = try cg.resolve(bin_op.lhs); const offset_id = try cg.resolve(bin_op.rhs); const ptr_ty = cg.typeOf(bin_op.lhs); const result_ty = cg.typeOfIndex(inst); return try cg.ptrAdd(result_ty, ptr_ty, ptr_id, offset_id); } fn airPtrSub(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl; const bin_op = cg.air.extraData(Air.Bin, ty_pl.payload).data; const ptr_id = try cg.resolve(bin_op.lhs); const ptr_ty = cg.typeOf(bin_op.lhs); const offset_id = try cg.resolve(bin_op.rhs); const offset_ty = cg.typeOf(bin_op.rhs); const offset_ty_id = try cg.resolveType(offset_ty, .direct); const result_ty = cg.typeOfIndex(inst); const negative_offset_id = cg.module.allocId(); try cg.body.emit(cg.module.gpa, .OpSNegate, .{ .id_result_type = offset_ty_id, .id_result = negative_offset_id, .operand = offset_id, }); return try cg.ptrAdd(result_ty, ptr_ty, ptr_id, negative_offset_id); } fn cmp( cg: *CodeGen, op: std.math.CompareOperator, lhs: Temporary, rhs: Temporary, ) !Temporary { const gpa = cg.module.gpa; const pt = cg.pt; const zcu = cg.module.zcu; const ip = &zcu.intern_pool; const scalar_ty = lhs.ty.scalarType(zcu); const is_vector = lhs.ty.isVector(zcu); switch (scalar_ty.zigTypeTag(zcu)) { .int, .bool, .float => {}, .@"enum" => { assert(!is_vector); const ty = lhs.ty.intTagType(zcu); return try cg.cmp(op, lhs.pun(ty), rhs.pun(ty)); }, .@"struct" => { const struct_ty = zcu.typeToPackedStruct(scalar_ty).?; const ty: Type = .fromInterned(struct_ty.backingIntTypeUnordered(ip)); return try cg.cmp(op, lhs.pun(ty), rhs.pun(ty)); }, .error_set => { assert(!is_vector); const err_int_ty = try pt.errorIntType(); return try cg.cmp(op, lhs.pun(err_int_ty), rhs.pun(err_int_ty)); }, .pointer => { assert(!is_vector); // Note that while SPIR-V offers OpPtrEqual and OpPtrNotEqual, they are // currently not implemented in the SPIR-V LLVM translator. Thus, we emit these using // OpConvertPtrToU... const usize_ty_id = try cg.resolveType(.usize, .direct); const lhs_int_id = cg.module.allocId(); try cg.body.emit(gpa, .OpConvertPtrToU, .{ .id_result_type = usize_ty_id, .id_result = lhs_int_id, .pointer = try lhs.materialize(cg), }); const rhs_int_id = cg.module.allocId(); try cg.body.emit(gpa, .OpConvertPtrToU, .{ .id_result_type = usize_ty_id, .id_result = rhs_int_id, .pointer = try rhs.materialize(cg), }); const lhs_int: Temporary = .init(.usize, lhs_int_id); const rhs_int: Temporary = .init(.usize, rhs_int_id); return try cg.cmp(op, lhs_int, rhs_int); }, .optional => { assert(!is_vector); const ty = lhs.ty; const payload_ty = ty.optionalChild(zcu); if (ty.optionalReprIsPayload(zcu)) { assert(payload_ty.hasRuntimeBitsIgnoreComptime(zcu)); assert(!payload_ty.isSlice(zcu)); return try cg.cmp(op, lhs.pun(payload_ty), rhs.pun(payload_ty)); } const lhs_id = try lhs.materialize(cg); const rhs_id = try rhs.materialize(cg); const lhs_valid_id = if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) try cg.extractField(.bool, lhs_id, 1) else try cg.convertToDirect(.bool, lhs_id); const rhs_valid_id = if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) try cg.extractField(.bool, rhs_id, 1) else try cg.convertToDirect(.bool, rhs_id); const lhs_valid: Temporary = .init(.bool, lhs_valid_id); const rhs_valid: Temporary = .init(.bool, rhs_valid_id); if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) { return try cg.cmp(op, lhs_valid, rhs_valid); } // a = lhs_valid // b = rhs_valid // c = lhs_pl == rhs_pl // // For op == .eq we have: // a == b && a -> c // = a == b && (!a || c) // // For op == .neq we have // a == b && a -> c // = !(a == b && a -> c) // = a != b || !(a -> c // = a != b || !(!a || c) // = a != b || a && !c const lhs_pl_id = try cg.extractField(payload_ty, lhs_id, 0); const rhs_pl_id = try cg.extractField(payload_ty, rhs_id, 0); const lhs_pl: Temporary = .init(payload_ty, lhs_pl_id); const rhs_pl: Temporary = .init(payload_ty, rhs_pl_id); return switch (op) { .eq => try cg.buildBinary( .OpLogicalAnd, try cg.cmp(.eq, lhs_valid, rhs_valid), try cg.buildBinary( .OpLogicalOr, try cg.buildUnary(.l_not, lhs_valid), try cg.cmp(.eq, lhs_pl, rhs_pl), ), ), .neq => try cg.buildBinary( .OpLogicalOr, try cg.cmp(.neq, lhs_valid, rhs_valid), try cg.buildBinary( .OpLogicalAnd, lhs_valid, try cg.cmp(.neq, lhs_pl, rhs_pl), ), ), else => unreachable, }; }, else => |ty| return cg.todo("implement cmp operation for '{s}' type", .{@tagName(ty)}), } const info = cg.arithmeticTypeInfo(scalar_ty); const pred: Opcode = switch (info.class) { .composite_integer => unreachable, // TODO .float => switch (op) { .eq => .OpFOrdEqual, .neq => .OpFUnordNotEqual, .lt => .OpFOrdLessThan, .lte => .OpFOrdLessThanEqual, .gt => .OpFOrdGreaterThan, .gte => .OpFOrdGreaterThanEqual, }, .bool => switch (op) { .eq => .OpLogicalEqual, .neq => .OpLogicalNotEqual, else => unreachable, }, .integer, .strange_integer => switch (info.signedness) { .signed => switch (op) { .eq => .OpIEqual, .neq => .OpINotEqual, .lt => .OpSLessThan, .lte => .OpSLessThanEqual, .gt => .OpSGreaterThan, .gte => .OpSGreaterThanEqual, }, .unsigned => switch (op) { .eq => .OpIEqual, .neq => .OpINotEqual, .lt => .OpULessThan, .lte => .OpULessThanEqual, .gt => .OpUGreaterThan, .gte => .OpUGreaterThanEqual, }, }, }; return try cg.buildCmp(pred, lhs, rhs); } fn airCmp( cg: *CodeGen, inst: Air.Inst.Index, comptime op: std.math.CompareOperator, ) !?Id { const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op; const lhs = try cg.temporary(bin_op.lhs); const rhs = try cg.temporary(bin_op.rhs); const result = try cg.cmp(op, lhs, rhs); return try result.materialize(cg); } fn airVectorCmp(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl; const vec_cmp = cg.air.extraData(Air.VectorCmp, ty_pl.payload).data; const lhs = try cg.temporary(vec_cmp.lhs); const rhs = try cg.temporary(vec_cmp.rhs); const op = vec_cmp.compareOperator(); const result = try cg.cmp(op, lhs, rhs); return try result.materialize(cg); } /// Bitcast one type to another. Note: both types, input, output are expected in **direct** representation. fn bitCast( cg: *CodeGen, dst_ty: Type, src_ty: Type, src_id: Id, ) !Id { const gpa = cg.module.gpa; const zcu = cg.module.zcu; const target = zcu.getTarget(); const src_ty_id = try cg.resolveType(src_ty, .direct); const dst_ty_id = try cg.resolveType(dst_ty, .direct); const result_id = blk: { if (src_ty_id == dst_ty_id) break :blk src_id; // TODO: Some more cases are missing here // See fn bitCast in llvm.zig if (src_ty.zigTypeTag(zcu) == .int and dst_ty.isPtrAtRuntime(zcu)) { if (target.os.tag != .opencl) { if (dst_ty.ptrAddressSpace(zcu) != .physical_storage_buffer) { return cg.fail( "cannot cast integer to pointer with address space '{s}'", .{@tagName(dst_ty.ptrAddressSpace(zcu))}, ); } } const result_id = cg.module.allocId(); try cg.body.emit(gpa, .OpConvertUToPtr, .{ .id_result_type = dst_ty_id, .id_result = result_id, .integer_value = src_id, }); break :blk result_id; } // We can only use OpBitcast for specific conversions: between numerical types, and // between pointers. If the resolved spir-v types fall into this category then emit OpBitcast, // otherwise use a temporary and perform a pointer cast. const can_bitcast = (src_ty.isNumeric(zcu) and dst_ty.isNumeric(zcu)) or (src_ty.isPtrAtRuntime(zcu) and dst_ty.isPtrAtRuntime(zcu)); if (can_bitcast) { const result_id = cg.module.allocId(); try cg.body.emit(gpa, .OpBitcast, .{ .id_result_type = dst_ty_id, .id_result = result_id, .operand = src_id, }); break :blk result_id; } const dst_ptr_ty_id = try cg.module.ptrType(dst_ty_id, .function); const src_ty_indirect_id = try cg.resolveType(src_ty, .indirect); const tmp_id = try cg.alloc(src_ty_indirect_id, null); try cg.store(src_ty, tmp_id, src_id, .{}); const casted_ptr_id = cg.module.allocId(); try cg.body.emit(gpa, .OpBitcast, .{ .id_result_type = dst_ptr_ty_id, .id_result = casted_ptr_id, .operand = tmp_id, }); break :blk try cg.load(dst_ty, casted_ptr_id, .{}); }; // Because strange integers use sign-extended representation, we may need to normalize // the result here. // TODO: This detail could cause stuff like @as(*const i1, @ptrCast(&@as(u1, 1))) to break // should we change the representation of strange integers? if (dst_ty.zigTypeTag(zcu) == .int) { const info = cg.arithmeticTypeInfo(dst_ty); const result = try cg.normalize(Temporary.init(dst_ty, result_id), info); return try result.materialize(cg); } return result_id; } fn airBitCast(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const operand_ty = cg.typeOf(ty_op.operand); const result_ty = cg.typeOfIndex(inst); if (operand_ty.toIntern() == .bool_type) { const operand = try cg.temporary(ty_op.operand); const result = try cg.intFromBool(operand, .u1); return try result.materialize(cg); } const operand_id = try cg.resolve(ty_op.operand); return try cg.bitCast(result_ty, operand_ty, operand_id); } fn airIntCast(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const src = try cg.temporary(ty_op.operand); const dst_ty = cg.typeOfIndex(inst); const src_info = cg.arithmeticTypeInfo(src.ty); const dst_info = cg.arithmeticTypeInfo(dst_ty); if (src_info.backing_bits == dst_info.backing_bits) { return try src.materialize(cg); } const converted = try cg.buildConvert(dst_ty, src); // Make sure to normalize the result if shrinking. // Because strange ints are sign extended in their backing // type, we don't need to normalize when growing the type. The // representation is already the same. const result = if (dst_info.bits < src_info.bits) try cg.normalize(converted, dst_info) else converted; return try result.materialize(cg); } fn intFromPtr(cg: *CodeGen, operand_id: Id) !Id { const result_type_id = try cg.resolveType(.usize, .direct); const result_id = cg.module.allocId(); try cg.body.emit(cg.module.gpa, .OpConvertPtrToU, .{ .id_result_type = result_type_id, .id_result = result_id, .pointer = operand_id, }); return result_id; } fn airFloatFromInt(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const operand_ty = cg.typeOf(ty_op.operand); const operand_id = try cg.resolve(ty_op.operand); const result_ty = cg.typeOfIndex(inst); return try cg.floatFromInt(result_ty, operand_ty, operand_id); } fn floatFromInt(cg: *CodeGen, result_ty: Type, operand_ty: Type, operand_id: Id) !Id { const gpa = cg.module.gpa; const operand_info = cg.arithmeticTypeInfo(operand_ty); const result_id = cg.module.allocId(); const result_ty_id = try cg.resolveType(result_ty, .direct); switch (operand_info.signedness) { .signed => try cg.body.emit(gpa, .OpConvertSToF, .{ .id_result_type = result_ty_id, .id_result = result_id, .signed_value = operand_id, }), .unsigned => try cg.body.emit(gpa, .OpConvertUToF, .{ .id_result_type = result_ty_id, .id_result = result_id, .unsigned_value = operand_id, }), } return result_id; } fn airIntFromFloat(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const operand_id = try cg.resolve(ty_op.operand); const result_ty = cg.typeOfIndex(inst); return try cg.intFromFloat(result_ty, operand_id); } fn intFromFloat(cg: *CodeGen, result_ty: Type, operand_id: Id) !Id { const gpa = cg.module.gpa; const result_info = cg.arithmeticTypeInfo(result_ty); const result_ty_id = try cg.resolveType(result_ty, .direct); const result_id = cg.module.allocId(); switch (result_info.signedness) { .signed => try cg.body.emit(gpa, .OpConvertFToS, .{ .id_result_type = result_ty_id, .id_result = result_id, .float_value = operand_id, }), .unsigned => try cg.body.emit(gpa, .OpConvertFToU, .{ .id_result_type = result_ty_id, .id_result = result_id, .float_value = operand_id, }), } return result_id; } fn airFloatCast(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const operand = try cg.temporary(ty_op.operand); const dest_ty = cg.typeOfIndex(inst); const result = try cg.buildConvert(dest_ty, operand); return try result.materialize(cg); } fn airNot(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const operand = try cg.temporary(ty_op.operand); const result_ty = cg.typeOfIndex(inst); const info = cg.arithmeticTypeInfo(result_ty); const result = switch (info.class) { .bool => try cg.buildUnary(.l_not, operand), .float => unreachable, .composite_integer => unreachable, // TODO .strange_integer, .integer => blk: { const complement = try cg.buildUnary(.bit_not, operand); break :blk try cg.normalize(complement, info); }, }; return try result.materialize(cg); } fn airArrayToSlice(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const array_ptr_ty = cg.typeOf(ty_op.operand); const array_ty = array_ptr_ty.childType(zcu); const slice_ty = cg.typeOfIndex(inst); const elem_ptr_ty = slice_ty.slicePtrFieldType(zcu); const elem_ptr_ty_id = try cg.resolveType(elem_ptr_ty, .direct); const array_ptr_id = try cg.resolve(ty_op.operand); const len_id = try cg.constInt(.usize, array_ty.arrayLen(zcu)); const elem_ptr_id = if (!array_ty.hasRuntimeBitsIgnoreComptime(zcu)) // Note: The pointer is something like *opaque{}, so we need to bitcast it to the element type. try cg.bitCast(elem_ptr_ty, array_ptr_ty, array_ptr_id) else // Convert the pointer-to-array to a pointer to the first element. try cg.accessChain(elem_ptr_ty_id, array_ptr_id, &.{0}); const slice_ty_id = try cg.resolveType(slice_ty, .direct); return try cg.constructComposite(slice_ty_id, &.{ elem_ptr_id, len_id }); } fn airSlice(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl; const bin_op = cg.air.extraData(Air.Bin, ty_pl.payload).data; const ptr_id = try cg.resolve(bin_op.lhs); const len_id = try cg.resolve(bin_op.rhs); const slice_ty = cg.typeOfIndex(inst); const slice_ty_id = try cg.resolveType(slice_ty, .direct); return try cg.constructComposite(slice_ty_id, &.{ ptr_id, len_id }); } fn airAggregateInit(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const gpa = cg.module.gpa; const pt = cg.pt; const zcu = cg.module.zcu; const ip = &zcu.intern_pool; const target = cg.module.zcu.getTarget(); const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl; const result_ty = cg.typeOfIndex(inst); const len: usize = @intCast(result_ty.arrayLen(zcu)); const elements: []const Air.Inst.Ref = @ptrCast(cg.air.extra.items[ty_pl.payload..][0..len]); switch (result_ty.zigTypeTag(zcu)) { .@"struct" => { if (zcu.typeToPackedStruct(result_ty)) |struct_type| { comptime assert(Type.packed_struct_layout_version == 2); const backing_int_ty: Type = .fromInterned(struct_type.backingIntTypeUnordered(ip)); var running_int_id = try cg.constInt(backing_int_ty, 0); var running_bits: u16 = 0; for (struct_type.field_types.get(ip), elements) |field_ty_ip, element| { const field_ty: Type = .fromInterned(field_ty_ip); if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue; const field_id = try cg.resolve(element); const ty_bit_size: u16 = @intCast(field_ty.bitSize(zcu)); const field_int_ty = try cg.pt.intType(.unsigned, ty_bit_size); const field_int_id = blk: { if (field_ty.isPtrAtRuntime(zcu)) { assert(target.cpu.arch == .spirv64 and field_ty.ptrAddressSpace(zcu) == .storage_buffer); break :blk try cg.intFromPtr(field_id); } break :blk try cg.bitCast(field_int_ty, field_ty, field_id); }; const shift_rhs = try cg.constInt(backing_int_ty, running_bits); const extended_int_conv = try cg.buildConvert(backing_int_ty, .{ .ty = field_int_ty, .value = .{ .singleton = field_int_id }, }); const shifted = try cg.buildBinary(.OpShiftLeftLogical, extended_int_conv, .{ .ty = backing_int_ty, .value = .{ .singleton = shift_rhs }, }); const running_int_tmp = try cg.buildBinary( .OpBitwiseOr, .{ .ty = backing_int_ty, .value = .{ .singleton = running_int_id } }, shifted, ); running_int_id = try running_int_tmp.materialize(cg); running_bits += ty_bit_size; } return running_int_id; } const scratch_top = cg.id_scratch.items.len; defer cg.id_scratch.shrinkRetainingCapacity(scratch_top); const constituents = try cg.id_scratch.addManyAsSlice(gpa, elements.len); const types = try gpa.alloc(Type, elements.len); defer gpa.free(types); var index: usize = 0; switch (ip.indexToKey(result_ty.toIntern())) { .tuple_type => |tuple| { for (tuple.types.get(ip), elements, 0..) |field_ty, element, i| { if ((try result_ty.structFieldValueComptime(pt, i)) != null) continue; assert(Type.fromInterned(field_ty).hasRuntimeBits(zcu)); const id = try cg.resolve(element); types[index] = .fromInterned(field_ty); constituents[index] = try cg.convertToIndirect(.fromInterned(field_ty), id); index += 1; } }, .struct_type => { const struct_type = ip.loadStructType(result_ty.toIntern()); var it = struct_type.iterateRuntimeOrder(ip); for (elements, 0..) |element, i| { const field_index = it.next().?; if ((try result_ty.structFieldValueComptime(pt, i)) != null) continue; const field_ty: Type = .fromInterned(struct_type.field_types.get(ip)[field_index]); assert(field_ty.hasRuntimeBitsIgnoreComptime(zcu)); const id = try cg.resolve(element); types[index] = field_ty; constituents[index] = try cg.convertToIndirect(field_ty, id); index += 1; } }, else => unreachable, } const result_ty_id = try cg.resolveType(result_ty, .direct); return try cg.constructComposite(result_ty_id, constituents[0..index]); }, .vector => { const n_elems = result_ty.vectorLen(zcu); const scratch_top = cg.id_scratch.items.len; defer cg.id_scratch.shrinkRetainingCapacity(scratch_top); const elem_ids = try cg.id_scratch.addManyAsSlice(gpa, n_elems); for (elements, 0..) |element, i| { elem_ids[i] = try cg.resolve(element); } const result_ty_id = try cg.resolveType(result_ty, .direct); return try cg.constructComposite(result_ty_id, elem_ids); }, .array => { const array_info = result_ty.arrayInfo(zcu); const n_elems: usize = @intCast(result_ty.arrayLenIncludingSentinel(zcu)); const scratch_top = cg.id_scratch.items.len; defer cg.id_scratch.shrinkRetainingCapacity(scratch_top); const elem_ids = try cg.id_scratch.addManyAsSlice(gpa, n_elems); for (elements, 0..) |element, i| { const id = try cg.resolve(element); elem_ids[i] = try cg.convertToIndirect(array_info.elem_type, id); } if (array_info.sentinel) |sentinel_val| { elem_ids[n_elems - 1] = try cg.constant(array_info.elem_type, sentinel_val, .indirect); } const result_ty_id = try cg.resolveType(result_ty, .direct); return try cg.constructComposite(result_ty_id, elem_ids); }, else => unreachable, } } fn sliceOrArrayLen(cg: *CodeGen, operand_id: Id, ty: Type) !Id { const zcu = cg.module.zcu; switch (ty.ptrSize(zcu)) { .slice => return cg.extractField(.usize, operand_id, 1), .one => { const array_ty = ty.childType(zcu); const elem_ty = array_ty.childType(zcu); const abi_size = elem_ty.abiSize(zcu); const size = array_ty.arrayLenIncludingSentinel(zcu) * abi_size; return try cg.constInt(.usize, size); }, .many, .c => unreachable, } } fn sliceOrArrayPtr(cg: *CodeGen, operand_id: Id, ty: Type) !Id { const zcu = cg.module.zcu; if (ty.isSlice(zcu)) { const ptr_ty = ty.slicePtrFieldType(zcu); return cg.extractField(ptr_ty, operand_id, 0); } return operand_id; } fn airMemcpy(cg: *CodeGen, inst: Air.Inst.Index) !void { const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op; const dest_slice = try cg.resolve(bin_op.lhs); const src_slice = try cg.resolve(bin_op.rhs); const dest_ty = cg.typeOf(bin_op.lhs); const src_ty = cg.typeOf(bin_op.rhs); const dest_ptr = try cg.sliceOrArrayPtr(dest_slice, dest_ty); const src_ptr = try cg.sliceOrArrayPtr(src_slice, src_ty); const len = try cg.sliceOrArrayLen(dest_slice, dest_ty); try cg.body.emit(cg.module.gpa, .OpCopyMemorySized, .{ .target = dest_ptr, .source = src_ptr, .size = len, }); } fn airMemmove(cg: *CodeGen, inst: Air.Inst.Index) !void { _ = inst; return cg.fail("TODO implement airMemcpy for spirv", .{}); } fn airSliceField(cg: *CodeGen, inst: Air.Inst.Index, field: u32) !?Id { const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const field_ty = cg.typeOfIndex(inst); const operand_id = try cg.resolve(ty_op.operand); return try cg.extractField(field_ty, operand_id, field); } fn airSliceElemPtr(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl; const bin_op = cg.air.extraData(Air.Bin, ty_pl.payload).data; const slice_ty = cg.typeOf(bin_op.lhs); if (!slice_ty.isVolatilePtr(zcu) and cg.liveness.isUnused(inst)) return null; const slice_id = try cg.resolve(bin_op.lhs); const index_id = try cg.resolve(bin_op.rhs); const ptr_ty = cg.typeOfIndex(inst); const ptr_ty_id = try cg.resolveType(ptr_ty, .direct); const slice_ptr = try cg.extractField(ptr_ty, slice_id, 0); return try cg.ptrAccessChain(ptr_ty_id, slice_ptr, index_id, &.{}); } fn airSliceElemVal(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op; const slice_ty = cg.typeOf(bin_op.lhs); if (!slice_ty.isVolatilePtr(zcu) and cg.liveness.isUnused(inst)) return null; const slice_id = try cg.resolve(bin_op.lhs); const index_id = try cg.resolve(bin_op.rhs); const ptr_ty = slice_ty.slicePtrFieldType(zcu); const ptr_ty_id = try cg.resolveType(ptr_ty, .direct); const slice_ptr = try cg.extractField(ptr_ty, slice_id, 0); const elem_ptr = try cg.ptrAccessChain(ptr_ty_id, slice_ptr, index_id, &.{}); return try cg.load(slice_ty.childType(zcu), elem_ptr, .{ .is_volatile = slice_ty.isVolatilePtr(zcu) }); } fn ptrElemPtr(cg: *CodeGen, ptr_ty: Type, ptr_id: Id, index_id: Id) !Id { const zcu = cg.module.zcu; // Construct new pointer type for the resulting pointer const elem_ty = ptr_ty.elemType2(zcu); // use elemType() so that we get T for *[N]T. const elem_ty_id = try cg.resolveType(elem_ty, .indirect); const elem_ptr_ty_id = try cg.module.ptrType(elem_ty_id, cg.module.storageClass(ptr_ty.ptrAddressSpace(zcu))); if (ptr_ty.isSinglePointer(zcu)) { // Pointer-to-array. In this case, the resulting pointer is not of the same type // as the ptr_ty (we want a *T, not a *[N]T), and hence we need to use accessChain. return try cg.accessChainId(elem_ptr_ty_id, ptr_id, &.{index_id}); } else { // Resulting pointer type is the same as the ptr_ty, so use ptrAccessChain return try cg.ptrAccessChain(elem_ptr_ty_id, ptr_id, index_id, &.{}); } } fn airPtrElemPtr(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl; const bin_op = cg.air.extraData(Air.Bin, ty_pl.payload).data; const src_ptr_ty = cg.typeOf(bin_op.lhs); const elem_ty = src_ptr_ty.childType(zcu); const ptr_id = try cg.resolve(bin_op.lhs); if (!elem_ty.hasRuntimeBitsIgnoreComptime(zcu)) { const dst_ptr_ty = cg.typeOfIndex(inst); return try cg.bitCast(dst_ptr_ty, src_ptr_ty, ptr_id); } const index_id = try cg.resolve(bin_op.rhs); return try cg.ptrElemPtr(src_ptr_ty, ptr_id, index_id); } fn airArrayElemVal(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const gpa = cg.module.gpa; const zcu = cg.module.zcu; const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op; const array_ty = cg.typeOf(bin_op.lhs); const elem_ty = array_ty.childType(zcu); const array_id = try cg.resolve(bin_op.lhs); const index_id = try cg.resolve(bin_op.rhs); // SPIR-V doesn't have an array indexing function for some damn reason. // For now, just generate a temporary and use that. // TODO: This backend probably also should use isByRef from llvm... const is_vector = array_ty.isVector(zcu); const elem_repr: Repr = if (is_vector) .direct else .indirect; const array_ty_id = try cg.resolveType(array_ty, .direct); const elem_ty_id = try cg.resolveType(elem_ty, elem_repr); const ptr_array_ty_id = try cg.module.ptrType(array_ty_id, .function); const ptr_elem_ty_id = try cg.module.ptrType(elem_ty_id, .function); const tmp_id = cg.module.allocId(); try cg.prologue.emit(gpa, .OpVariable, .{ .id_result_type = ptr_array_ty_id, .id_result = tmp_id, .storage_class = .function, }); try cg.body.emit(gpa, .OpStore, .{ .pointer = tmp_id, .object = array_id, }); const elem_ptr_id = try cg.accessChainId(ptr_elem_ty_id, tmp_id, &.{index_id}); const result_id = cg.module.allocId(); try cg.body.emit(gpa, .OpLoad, .{ .id_result_type = try cg.resolveType(elem_ty, elem_repr), .id_result = result_id, .pointer = elem_ptr_id, }); if (is_vector) { // Result is already in direct representation return result_id; } // This is an array type; the elements are stored in indirect representation. // We have to convert the type to direct. return try cg.convertToDirect(elem_ty, result_id); } fn airPtrElemVal(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op; const ptr_ty = cg.typeOf(bin_op.lhs); const elem_ty = cg.typeOfIndex(inst); const ptr_id = try cg.resolve(bin_op.lhs); const index_id = try cg.resolve(bin_op.rhs); const elem_ptr_id = try cg.ptrElemPtr(ptr_ty, ptr_id, index_id); return try cg.load(elem_ty, elem_ptr_id, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) }); } fn airVectorStoreElem(cg: *CodeGen, inst: Air.Inst.Index) !void { const zcu = cg.module.zcu; const data = cg.air.instructions.items(.data)[@intFromEnum(inst)].vector_store_elem; const extra = cg.air.extraData(Air.Bin, data.payload).data; const vector_ptr_ty = cg.typeOf(data.vector_ptr); const vector_ty = vector_ptr_ty.childType(zcu); const scalar_ty = vector_ty.scalarType(zcu); const scalar_ty_id = try cg.resolveType(scalar_ty, .indirect); const storage_class = cg.module.storageClass(vector_ptr_ty.ptrAddressSpace(zcu)); const scalar_ptr_ty_id = try cg.module.ptrType(scalar_ty_id, storage_class); const vector_ptr = try cg.resolve(data.vector_ptr); const index = try cg.resolve(extra.lhs); const operand = try cg.resolve(extra.rhs); const elem_ptr_id = try cg.accessChainId(scalar_ptr_ty_id, vector_ptr, &.{index}); try cg.store(scalar_ty, elem_ptr_id, operand, .{ .is_volatile = vector_ptr_ty.isVolatilePtr(zcu), }); } fn airSetUnionTag(cg: *CodeGen, inst: Air.Inst.Index) !void { const zcu = cg.module.zcu; const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op; const un_ptr_ty = cg.typeOf(bin_op.lhs); const un_ty = un_ptr_ty.childType(zcu); const layout = cg.unionLayout(un_ty); if (layout.tag_size == 0) return; const tag_ty = un_ty.unionTagTypeSafety(zcu).?; const tag_ty_id = try cg.resolveType(tag_ty, .indirect); const tag_ptr_ty_id = try cg.module.ptrType(tag_ty_id, cg.module.storageClass(un_ptr_ty.ptrAddressSpace(zcu))); const union_ptr_id = try cg.resolve(bin_op.lhs); const new_tag_id = try cg.resolve(bin_op.rhs); if (!layout.has_payload) { try cg.store(tag_ty, union_ptr_id, new_tag_id, .{ .is_volatile = un_ptr_ty.isVolatilePtr(zcu) }); } else { const ptr_id = try cg.accessChain(tag_ptr_ty_id, union_ptr_id, &.{layout.tag_index}); try cg.store(tag_ty, ptr_id, new_tag_id, .{ .is_volatile = un_ptr_ty.isVolatilePtr(zcu) }); } } fn airGetUnionTag(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const un_ty = cg.typeOf(ty_op.operand); const zcu = cg.module.zcu; const layout = cg.unionLayout(un_ty); if (layout.tag_size == 0) return null; const union_handle = try cg.resolve(ty_op.operand); if (!layout.has_payload) return union_handle; const tag_ty = un_ty.unionTagTypeSafety(zcu).?; return try cg.extractField(tag_ty, union_handle, layout.tag_index); } fn unionInit( cg: *CodeGen, ty: Type, active_field: u32, payload: ?Id, ) !Id { // To initialize a union, generate a temporary variable with the // union type, then get the field pointer and pointer-cast it to the // right type to store it. Finally load the entire union. // Note: The result here is not cached, because it generates runtime code. const pt = cg.pt; const zcu = cg.module.zcu; const ip = &zcu.intern_pool; const union_ty = zcu.typeToUnion(ty).?; const tag_ty: Type = .fromInterned(union_ty.enum_tag_ty); const layout = cg.unionLayout(ty); const payload_ty: Type = .fromInterned(union_ty.field_types.get(ip)[active_field]); if (union_ty.flagsUnordered(ip).layout == .@"packed") { if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) { const int_ty = try pt.intType(.unsigned, @intCast(ty.bitSize(zcu))); return cg.constInt(int_ty, 0); } assert(payload != null); if (payload_ty.isInt(zcu)) { if (ty.bitSize(zcu) == payload_ty.bitSize(zcu)) { return cg.bitCast(ty, payload_ty, payload.?); } const trunc = try cg.buildConvert(ty, .{ .ty = payload_ty, .value = .{ .singleton = payload.? } }); return try trunc.materialize(cg); } const payload_int_ty = try pt.intType(.unsigned, @intCast(payload_ty.bitSize(zcu))); const payload_int = if (payload_ty.ip_index == .bool_type) try cg.convertToIndirect(payload_ty, payload.?) else try cg.bitCast(payload_int_ty, payload_ty, payload.?); const trunc = try cg.buildConvert(ty, .{ .ty = payload_int_ty, .value = .{ .singleton = payload_int } }); return try trunc.materialize(cg); } const tag_int = if (layout.tag_size != 0) blk: { const tag_val = try pt.enumValueFieldIndex(tag_ty, active_field); const tag_int_val = try tag_val.intFromEnum(tag_ty, pt); break :blk tag_int_val.toUnsignedInt(zcu); } else 0; if (!layout.has_payload) { return try cg.constInt(tag_ty, tag_int); } const ty_id = try cg.resolveType(ty, .indirect); const tmp_id = try cg.alloc(ty_id, null); if (layout.tag_size != 0) { const tag_ty_id = try cg.resolveType(tag_ty, .indirect); const tag_ptr_ty_id = try cg.module.ptrType(tag_ty_id, .function); const ptr_id = try cg.accessChain(tag_ptr_ty_id, tmp_id, &.{@as(u32, @intCast(layout.tag_index))}); const tag_id = try cg.constInt(tag_ty, tag_int); try cg.store(tag_ty, ptr_id, tag_id, .{}); } if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) { const layout_payload_ty_id = try cg.resolveType(layout.payload_ty, .indirect); const pl_ptr_ty_id = try cg.module.ptrType(layout_payload_ty_id, .function); const pl_ptr_id = try cg.accessChain(pl_ptr_ty_id, tmp_id, &.{layout.payload_index}); const active_pl_ptr_id = if (!layout.payload_ty.eql(payload_ty, zcu)) blk: { const payload_ty_id = try cg.resolveType(payload_ty, .indirect); const active_pl_ptr_ty_id = try cg.module.ptrType(payload_ty_id, .function); const active_pl_ptr_id = cg.module.allocId(); try cg.body.emit(cg.module.gpa, .OpBitcast, .{ .id_result_type = active_pl_ptr_ty_id, .id_result = active_pl_ptr_id, .operand = pl_ptr_id, }); break :blk active_pl_ptr_id; } else pl_ptr_id; try cg.store(payload_ty, active_pl_ptr_id, payload.?, .{}); } else { assert(payload == null); } // Just leave the padding fields uninitialized... // TODO: Or should we initialize them with undef explicitly? return try cg.load(ty, tmp_id, .{}); } fn airUnionInit(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const ip = &zcu.intern_pool; const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl; const extra = cg.air.extraData(Air.UnionInit, ty_pl.payload).data; const ty = cg.typeOfIndex(inst); const union_obj = zcu.typeToUnion(ty).?; const field_ty: Type = .fromInterned(union_obj.field_types.get(ip)[extra.field_index]); const payload = if (field_ty.hasRuntimeBitsIgnoreComptime(zcu)) try cg.resolve(extra.init) else null; return try cg.unionInit(ty, extra.field_index, payload); } fn airStructFieldVal(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const pt = cg.pt; const zcu = cg.module.zcu; const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl; const struct_field = cg.air.extraData(Air.StructField, ty_pl.payload).data; const object_ty = cg.typeOf(struct_field.struct_operand); const object_id = try cg.resolve(struct_field.struct_operand); const field_index = struct_field.field_index; const field_ty = object_ty.fieldType(field_index, zcu); if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) return null; switch (object_ty.zigTypeTag(zcu)) { .@"struct" => switch (object_ty.containerLayout(zcu)) { .@"packed" => { const struct_ty = zcu.typeToPackedStruct(object_ty).?; const struct_backing_int_bits = cg.module.backingIntBits(@intCast(object_ty.bitSize(zcu))).@"0"; const bit_offset = zcu.structPackedFieldBitOffset(struct_ty, field_index); // We use the same int type the packed struct is backed by, because even though it would // be valid SPIR-V to use an smaller type like u16, some implementations like PoCL will complain. const bit_offset_id = try cg.constInt(object_ty, bit_offset); const signedness = if (field_ty.isInt(zcu)) field_ty.intInfo(zcu).signedness else .unsigned; const field_bit_size: u16 = @intCast(field_ty.bitSize(zcu)); const field_int_ty = try pt.intType(signedness, field_bit_size); const shift_lhs: Temporary = .{ .ty = object_ty, .value = .{ .singleton = object_id } }; const shift = try cg.buildBinary(.OpShiftRightLogical, shift_lhs, .{ .ty = object_ty, .value = .{ .singleton = bit_offset_id } }); const mask_id = try cg.constInt(object_ty, (@as(u64, 1) << @as(u6, @intCast(field_bit_size))) - 1); const masked = try cg.buildBinary(.OpBitwiseAnd, shift, .{ .ty = object_ty, .value = .{ .singleton = mask_id } }); const result_id = blk: { if (cg.module.backingIntBits(field_bit_size).@"0" == struct_backing_int_bits) break :blk try cg.bitCast(field_int_ty, object_ty, try masked.materialize(cg)); const trunc = try cg.buildConvert(field_int_ty, masked); break :blk try trunc.materialize(cg); }; if (field_ty.ip_index == .bool_type) return try cg.convertToDirect(.bool, result_id); if (field_ty.isInt(zcu)) return result_id; return try cg.bitCast(field_ty, field_int_ty, result_id); }, else => return try cg.extractField(field_ty, object_id, field_index), }, .@"union" => switch (object_ty.containerLayout(zcu)) { .@"packed" => { const backing_int_ty = try pt.intType(.unsigned, @intCast(object_ty.bitSize(zcu))); const signedness = if (field_ty.isInt(zcu)) field_ty.intInfo(zcu).signedness else .unsigned; const field_bit_size: u16 = @intCast(field_ty.bitSize(zcu)); const int_ty = try pt.intType(signedness, field_bit_size); const mask_id = try cg.constInt(backing_int_ty, (@as(u64, 1) << @as(u6, @intCast(field_bit_size))) - 1); const masked = try cg.buildBinary( .OpBitwiseAnd, .{ .ty = backing_int_ty, .value = .{ .singleton = object_id } }, .{ .ty = backing_int_ty, .value = .{ .singleton = mask_id } }, ); const result_id = blk: { if (cg.module.backingIntBits(field_bit_size).@"0" == cg.module.backingIntBits(@intCast(backing_int_ty.bitSize(zcu))).@"0") break :blk try cg.bitCast(int_ty, backing_int_ty, try masked.materialize(cg)); const trunc = try cg.buildConvert(int_ty, masked); break :blk try trunc.materialize(cg); }; if (field_ty.ip_index == .bool_type) return try cg.convertToDirect(.bool, result_id); if (field_ty.isInt(zcu)) return result_id; return try cg.bitCast(field_ty, int_ty, result_id); }, else => { // Store, ptr-elem-ptr, pointer-cast, load const layout = cg.unionLayout(object_ty); assert(layout.has_payload); const object_ty_id = try cg.resolveType(object_ty, .indirect); const tmp_id = try cg.alloc(object_ty_id, null); try cg.store(object_ty, tmp_id, object_id, .{}); const layout_payload_ty_id = try cg.resolveType(layout.payload_ty, .indirect); const pl_ptr_ty_id = try cg.module.ptrType(layout_payload_ty_id, .function); const pl_ptr_id = try cg.accessChain(pl_ptr_ty_id, tmp_id, &.{layout.payload_index}); const field_ty_id = try cg.resolveType(field_ty, .indirect); const active_pl_ptr_ty_id = try cg.module.ptrType(field_ty_id, .function); const active_pl_ptr_id = cg.module.allocId(); try cg.body.emit(cg.module.gpa, .OpBitcast, .{ .id_result_type = active_pl_ptr_ty_id, .id_result = active_pl_ptr_id, .operand = pl_ptr_id, }); return try cg.load(field_ty, active_pl_ptr_id, .{}); }, }, else => unreachable, } } fn airFieldParentPtr(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const target = zcu.getTarget(); const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl; const extra = cg.air.extraData(Air.FieldParentPtr, ty_pl.payload).data; const parent_ptr_ty = ty_pl.ty.toType(); const parent_ty = parent_ptr_ty.childType(zcu); const result_ty_id = try cg.resolveType(parent_ptr_ty, .indirect); const field_ptr = try cg.resolve(extra.field_ptr); const field_ptr_ty = cg.typeOf(extra.field_ptr); const field_ptr_int = try cg.intFromPtr(field_ptr); const field_offset = parent_ty.structFieldOffset(extra.field_index, zcu); const base_ptr_int = base_ptr_int: { if (field_offset == 0) break :base_ptr_int field_ptr_int; const field_offset_id = try cg.constInt(.usize, field_offset); const field_ptr_tmp: Temporary = .init(.usize, field_ptr_int); const field_offset_tmp: Temporary = .init(.usize, field_offset_id); const result = try cg.buildBinary(.OpISub, field_ptr_tmp, field_offset_tmp); break :base_ptr_int try result.materialize(cg); }; if (target.os.tag != .opencl) { if (field_ptr_ty.ptrAddressSpace(zcu) != .physical_storage_buffer) { return cg.fail( "cannot cast integer to pointer with address space '{s}'", .{@tagName(field_ptr_ty.ptrAddressSpace(zcu))}, ); } } const base_ptr = cg.module.allocId(); try cg.body.emit(cg.module.gpa, .OpConvertUToPtr, .{ .id_result_type = result_ty_id, .id_result = base_ptr, .integer_value = base_ptr_int, }); return base_ptr; } fn structFieldPtr( cg: *CodeGen, result_ptr_ty: Type, object_ptr_ty: Type, object_ptr: Id, field_index: u32, ) !Id { const result_ty_id = try cg.resolveType(result_ptr_ty, .direct); const zcu = cg.module.zcu; const object_ty = object_ptr_ty.childType(zcu); switch (object_ty.zigTypeTag(zcu)) { .pointer => { assert(object_ty.isSlice(zcu)); return cg.accessChain(result_ty_id, object_ptr, &.{field_index}); }, .@"struct" => switch (object_ty.containerLayout(zcu)) { .@"packed" => return cg.todo("implement field access for packed structs", .{}), else => { return try cg.accessChain(result_ty_id, object_ptr, &.{field_index}); }, }, .@"union" => { const layout = cg.unionLayout(object_ty); if (!layout.has_payload) { // Asked to get a pointer to a zero-sized field. Just lower this // to undefined, there is no reason to make it be a valid pointer. return try cg.module.constUndef(result_ty_id); } const storage_class = cg.module.storageClass(object_ptr_ty.ptrAddressSpace(zcu)); const layout_payload_ty_id = try cg.resolveType(layout.payload_ty, .indirect); const pl_ptr_ty_id = try cg.module.ptrType(layout_payload_ty_id, storage_class); const pl_ptr_id = blk: { if (object_ty.containerLayout(zcu) == .@"packed") break :blk object_ptr; break :blk try cg.accessChain(pl_ptr_ty_id, object_ptr, &.{layout.payload_index}); }; const active_pl_ptr_id = cg.module.allocId(); try cg.body.emit(cg.module.gpa, .OpBitcast, .{ .id_result_type = result_ty_id, .id_result = active_pl_ptr_id, .operand = pl_ptr_id, }); return active_pl_ptr_id; }, else => unreachable, } } fn airStructFieldPtrIndex(cg: *CodeGen, inst: Air.Inst.Index, field_index: u32) !?Id { const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const struct_ptr = try cg.resolve(ty_op.operand); const struct_ptr_ty = cg.typeOf(ty_op.operand); const result_ptr_ty = cg.typeOfIndex(inst); return try cg.structFieldPtr(result_ptr_ty, struct_ptr_ty, struct_ptr, field_index); } fn alloc(cg: *CodeGen, ty_id: Id, initializer: ?Id) !Id { const ptr_ty_id = try cg.module.ptrType(ty_id, .function); const result_id = cg.module.allocId(); try cg.prologue.emit(cg.module.gpa, .OpVariable, .{ .id_result_type = ptr_ty_id, .id_result = result_id, .storage_class = .function, .initializer = initializer, }); return result_id; } fn airAlloc(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const target = zcu.getTarget(); const ptr_ty = cg.typeOfIndex(inst); const child_ty = ptr_ty.childType(zcu); const child_ty_id = try cg.resolveType(child_ty, .indirect); const ptr_align = ptr_ty.ptrAlignment(zcu); const result_id = try cg.alloc(child_ty_id, null); if (ptr_align != child_ty.abiAlignment(zcu)) { if (target.os.tag != .opencl) return cg.fail("cannot apply alignment to variables", .{}); try cg.module.decorate(result_id, .{ .alignment = .{ .alignment = @intCast(ptr_align.toByteUnits().?) }, }); } return result_id; } fn airArg(cg: *CodeGen) Id { defer cg.next_arg_index += 1; return cg.args.items[cg.next_arg_index]; } /// Given a slice of incoming block connections, returns the block-id of the next /// block to jump to. This function emits instructions, so it should be emitted /// inside the merge block of the block. /// This function should only be called with structured control flow generation. fn structuredNextBlock(cg: *CodeGen, incoming: []const ControlFlow.Structured.Block.Incoming) !Id { assert(cg.control_flow == .structured); const result_id = cg.module.allocId(); const block_id_ty_id = try cg.resolveType(.u32, .direct); try cg.body.emitRaw(cg.module.gpa, .OpPhi, @intCast(2 + incoming.len * 2)); // result type + result + variable/parent... cg.body.writeOperand(Id, block_id_ty_id); cg.body.writeOperand(Id, result_id); for (incoming) |incoming_block| { cg.body.writeOperand(spec.PairIdRefIdRef, .{ incoming_block.next_block, incoming_block.src_label }); } return result_id; } /// Jumps to the block with the target block-id. This function must only be called when /// terminating a body, there should be no instructions after it. /// This function should only be called with structured control flow generation. fn structuredBreak(cg: *CodeGen, target_block: Id) !void { assert(cg.control_flow == .structured); const gpa = cg.module.gpa; const sblock = cg.control_flow.structured.block_stack.getLast(); const merge_block = switch (sblock.*) { .selection => |*merge| blk: { const merge_label = cg.module.allocId(); try merge.merge_stack.append(gpa, .{ .incoming = .{ .src_label = cg.block_label, .next_block = target_block, }, .merge_block = merge_label, }); break :blk merge_label; }, // Loop blocks do not end in a break. Not through a direct break, // and also not through another instruction like cond_br or unreachable (these // situations are replaced by `cond_br` in sema, or there is a `block` instruction // placed around them). .loop => unreachable, }; try cg.body.emit(gpa, .OpBranch, .{ .target_label = merge_block }); } /// Generate a body in a way that exits the body using only structured constructs. /// Returns the block-id of the next block to jump to. After this function, a jump /// should still be emitted to the block that should follow this structured body. /// This function should only be called with structured control flow generation. fn genStructuredBody( cg: *CodeGen, /// This parameter defines the method that this structured body is exited with. block_merge_type: union(enum) { /// Using selection; early exits from this body are surrounded with /// if() statements. selection, /// Using loops; loops can be early exited by jumping to the merge block at /// any time. loop: struct { merge_label: Id, continue_label: Id, }, }, body: []const Air.Inst.Index, ) !Id { assert(cg.control_flow == .structured); const gpa = cg.module.gpa; var sblock: ControlFlow.Structured.Block = switch (block_merge_type) { .loop => |merge| .{ .loop = .{ .merge_block = merge.merge_label, } }, .selection => .{ .selection = .{} }, }; defer sblock.deinit(gpa); { try cg.control_flow.structured.block_stack.append(gpa, &sblock); defer _ = cg.control_flow.structured.block_stack.pop(); try cg.genBody(body); } switch (sblock) { .selection => |merge| { // Now generate the merge block for all merges that // still need to be performed. const merge_stack = merge.merge_stack.items; // If no merges on the stack, this block didn't generate any jumps (all paths // ended with a return or an unreachable). In that case, we don't need to do // any merging. if (merge_stack.len == 0) { // We still need to return a value of a next block to jump to. // For example, if we have code like // if (x) { // if (y) return else return; // } else {} // then we still need the outer to have an OpSelectionMerge and consequently // a phi node. In that case we can just return bogus, since we know that its // path will never be taken. // Make sure that we are still in a block when exiting the function. // TODO: Can we get rid of that? try cg.beginSpvBlock(cg.module.allocId()); const block_id_ty_id = try cg.resolveType(.u32, .direct); return try cg.module.constUndef(block_id_ty_id); } // The top-most merge actually only has a single source, the // final jump of the block, or the merge block of a sub-block, cond_br, // or loop. Therefore we just need to generate a block with a jump to the // next merge block. try cg.beginSpvBlock(merge_stack[merge_stack.len - 1].merge_block); // Now generate a merge ladder for the remaining merges in the stack. var incoming: ControlFlow.Structured.Block.Incoming = .{ .src_label = cg.block_label, .next_block = merge_stack[merge_stack.len - 1].incoming.next_block, }; var i = merge_stack.len - 1; while (i > 0) { i -= 1; const step = merge_stack[i]; try cg.body.emit(gpa, .OpBranch, .{ .target_label = step.merge_block }); try cg.beginSpvBlock(step.merge_block); const next_block = try cg.structuredNextBlock(&.{ incoming, step.incoming }); incoming = .{ .src_label = step.merge_block, .next_block = next_block, }; } return incoming.next_block; }, .loop => |merge| { // Close the loop by jumping to the continue label try cg.body.emit(gpa, .OpBranch, .{ .target_label = block_merge_type.loop.continue_label }); // For blocks we must simple merge all the incoming blocks to get the next block. try cg.beginSpvBlock(merge.merge_block); return try cg.structuredNextBlock(merge.merges.items); }, } } fn airBlock(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const inst_datas = cg.air.instructions.items(.data); const extra = cg.air.extraData(Air.Block, inst_datas[@intFromEnum(inst)].ty_pl.payload); return cg.lowerBlock(inst, @ptrCast(cg.air.extra.items[extra.end..][0..extra.data.body_len])); } fn lowerBlock(cg: *CodeGen, inst: Air.Inst.Index, body: []const Air.Inst.Index) !?Id { // In AIR, a block doesn't really define an entry point like a block, but // more like a scope that breaks can jump out of and "return" a value from. // This cannot be directly modelled in SPIR-V, so in a block instruction, // we're going to split up the current block by first generating the code // of the block, then a label, and then generate the rest of the current // ir.Block in a different SPIR-V block. const gpa = cg.module.gpa; const zcu = cg.module.zcu; const ty = cg.typeOfIndex(inst); const have_block_result = ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu); const cf = switch (cg.control_flow) { .structured => |*cf| cf, .unstructured => |*cf| { var block: ControlFlow.Unstructured.Block = .{}; defer block.incoming_blocks.deinit(gpa); // 4 chosen as arbitrary initial capacity. try block.incoming_blocks.ensureUnusedCapacity(gpa, 4); try cf.blocks.putNoClobber(gpa, inst, &block); defer assert(cf.blocks.remove(inst)); try cg.genBody(body); // Only begin a new block if there were actually any breaks towards it. if (block.label) |label| { try cg.beginSpvBlock(label); } if (!have_block_result) return null; assert(block.label != null); const result_id = cg.module.allocId(); const result_type_id = try cg.resolveType(ty, .direct); try cg.body.emitRaw( gpa, .OpPhi, // result type + result + variable/parent... 2 + @as(u16, @intCast(block.incoming_blocks.items.len * 2)), ); cg.body.writeOperand(Id, result_type_id); cg.body.writeOperand(Id, result_id); for (block.incoming_blocks.items) |incoming| { cg.body.writeOperand( spec.PairIdRefIdRef, .{ incoming.break_value_id, incoming.src_label }, ); } return result_id; }, }; const maybe_block_result_var_id = if (have_block_result) blk: { const ty_id = try cg.resolveType(ty, .indirect); const block_result_var_id = try cg.alloc(ty_id, null); try cf.block_results.putNoClobber(gpa, inst, block_result_var_id); break :blk block_result_var_id; } else null; defer if (have_block_result) assert(cf.block_results.remove(inst)); const next_block = try cg.genStructuredBody(.selection, body); // When encountering a block instruction, we are always at least in the function's scope, // so there always has to be another entry. assert(cf.block_stack.items.len > 0); // Check if the target of the branch was this current block. const this_block = try cg.constInt(.u32, @intFromEnum(inst)); const jump_to_this_block_id = cg.module.allocId(); const bool_ty_id = try cg.resolveType(.bool, .direct); try cg.body.emit(gpa, .OpIEqual, .{ .id_result_type = bool_ty_id, .id_result = jump_to_this_block_id, .operand_1 = next_block, .operand_2 = this_block, }); const sblock = cf.block_stack.getLast(); if (ty.isNoReturn(zcu)) { // If this block is noreturn, this instruction is the last of a block, // and we must simply jump to the block's merge unconditionally. try cg.structuredBreak(next_block); } else { switch (sblock.*) { .selection => |*merge| { // To jump out of a selection block, push a new entry onto its merge stack and // generate a conditional branch to there and to the instructions following this block. const merge_label = cg.module.allocId(); const then_label = cg.module.allocId(); try cg.body.emit(gpa, .OpSelectionMerge, .{ .merge_block = merge_label, .selection_control = .{}, }); try cg.body.emit(gpa, .OpBranchConditional, .{ .condition = jump_to_this_block_id, .true_label = then_label, .false_label = merge_label, }); try merge.merge_stack.append(gpa, .{ .incoming = .{ .src_label = cg.block_label, .next_block = next_block, }, .merge_block = merge_label, }); try cg.beginSpvBlock(then_label); }, .loop => |*merge| { // To jump out of a loop block, generate a conditional that exits the block // to the loop merge if the target ID is not the one of this block. const continue_label = cg.module.allocId(); try cg.body.emit(gpa, .OpBranchConditional, .{ .condition = jump_to_this_block_id, .true_label = continue_label, .false_label = merge.merge_block, }); try merge.merges.append(gpa, .{ .src_label = cg.block_label, .next_block = next_block, }); try cg.beginSpvBlock(continue_label); }, } } if (maybe_block_result_var_id) |block_result_var_id| { return try cg.load(ty, block_result_var_id, .{}); } return null; } fn airBr(cg: *CodeGen, inst: Air.Inst.Index) !void { const gpa = cg.module.gpa; const zcu = cg.module.zcu; const br = cg.air.instructions.items(.data)[@intFromEnum(inst)].br; const operand_ty = cg.typeOf(br.operand); switch (cg.control_flow) { .structured => |*cf| { if (operand_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) { const operand_id = try cg.resolve(br.operand); const block_result_var_id = cf.block_results.get(br.block_inst).?; try cg.store(operand_ty, block_result_var_id, operand_id, .{}); } const next_block = try cg.constInt(.u32, @intFromEnum(br.block_inst)); try cg.structuredBreak(next_block); }, .unstructured => |cf| { const block = cf.blocks.get(br.block_inst).?; if (operand_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) { const operand_id = try cg.resolve(br.operand); // block_label should not be undefined here, lest there // is a br or br_void in the function's body. try block.incoming_blocks.append(gpa, .{ .src_label = cg.block_label, .break_value_id = operand_id, }); } if (block.label == null) { block.label = cg.module.allocId(); } try cg.body.emit(gpa, .OpBranch, .{ .target_label = block.label.? }); }, } } fn airCondBr(cg: *CodeGen, inst: Air.Inst.Index) !void { const gpa = cg.module.gpa; const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op; const cond_br = cg.air.extraData(Air.CondBr, pl_op.payload); const then_body: []const Air.Inst.Index = @ptrCast(cg.air.extra.items[cond_br.end..][0..cond_br.data.then_body_len]); const else_body: []const Air.Inst.Index = @ptrCast(cg.air.extra.items[cond_br.end + then_body.len ..][0..cond_br.data.else_body_len]); const condition_id = try cg.resolve(pl_op.operand); const then_label = cg.module.allocId(); const else_label = cg.module.allocId(); switch (cg.control_flow) { .structured => { const merge_label = cg.module.allocId(); try cg.body.emit(gpa, .OpSelectionMerge, .{ .merge_block = merge_label, .selection_control = .{}, }); try cg.body.emit(gpa, .OpBranchConditional, .{ .condition = condition_id, .true_label = then_label, .false_label = else_label, }); try cg.beginSpvBlock(then_label); const then_next = try cg.genStructuredBody(.selection, then_body); const then_incoming: ControlFlow.Structured.Block.Incoming = .{ .src_label = cg.block_label, .next_block = then_next, }; try cg.body.emit(gpa, .OpBranch, .{ .target_label = merge_label }); try cg.beginSpvBlock(else_label); const else_next = try cg.genStructuredBody(.selection, else_body); const else_incoming: ControlFlow.Structured.Block.Incoming = .{ .src_label = cg.block_label, .next_block = else_next, }; try cg.body.emit(gpa, .OpBranch, .{ .target_label = merge_label }); try cg.beginSpvBlock(merge_label); const next_block = try cg.structuredNextBlock(&.{ then_incoming, else_incoming }); try cg.structuredBreak(next_block); }, .unstructured => { try cg.body.emit(gpa, .OpBranchConditional, .{ .condition = condition_id, .true_label = then_label, .false_label = else_label, }); try cg.beginSpvBlock(then_label); try cg.genBody(then_body); try cg.beginSpvBlock(else_label); try cg.genBody(else_body); }, } } fn airLoop(cg: *CodeGen, inst: Air.Inst.Index) !void { const gpa = cg.module.gpa; const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl; const loop = cg.air.extraData(Air.Block, ty_pl.payload); const body: []const Air.Inst.Index = @ptrCast(cg.air.extra.items[loop.end..][0..loop.data.body_len]); const body_label = cg.module.allocId(); switch (cg.control_flow) { .structured => { const header_label = cg.module.allocId(); const merge_label = cg.module.allocId(); const continue_label = cg.module.allocId(); // The back-edge must point to the loop header, so generate a separate block for the // loop header so that we don't accidentally include some instructions from there // in the loop. try cg.body.emit(gpa, .OpBranch, .{ .target_label = header_label }); try cg.beginSpvBlock(header_label); // Emit loop header and jump to loop body try cg.body.emit(gpa, .OpLoopMerge, .{ .merge_block = merge_label, .continue_target = continue_label, .loop_control = .{}, }); try cg.body.emit(gpa, .OpBranch, .{ .target_label = body_label }); try cg.beginSpvBlock(body_label); const next_block = try cg.genStructuredBody(.{ .loop = .{ .merge_label = merge_label, .continue_label = continue_label, } }, body); try cg.structuredBreak(next_block); try cg.beginSpvBlock(continue_label); try cg.body.emit(gpa, .OpBranch, .{ .target_label = header_label }); }, .unstructured => { try cg.body.emit(gpa, .OpBranch, .{ .target_label = body_label }); try cg.beginSpvBlock(body_label); try cg.genBody(body); try cg.body.emit(gpa, .OpBranch, .{ .target_label = body_label }); }, } } fn airLoad(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const ptr_ty = cg.typeOf(ty_op.operand); const elem_ty = cg.typeOfIndex(inst); const operand = try cg.resolve(ty_op.operand); if (!ptr_ty.isVolatilePtr(zcu) and cg.liveness.isUnused(inst)) return null; return try cg.load(elem_ty, operand, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) }); } fn airStore(cg: *CodeGen, inst: Air.Inst.Index) !void { const zcu = cg.module.zcu; const bin_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].bin_op; const ptr_ty = cg.typeOf(bin_op.lhs); const elem_ty = ptr_ty.childType(zcu); const ptr = try cg.resolve(bin_op.lhs); const value = try cg.resolve(bin_op.rhs); try cg.store(elem_ty, ptr, value, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) }); } fn airRet(cg: *CodeGen, inst: Air.Inst.Index) !void { const gpa = cg.module.gpa; const zcu = cg.module.zcu; const operand = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op; const ret_ty = cg.typeOf(operand); if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) { const fn_info = zcu.typeToFunc(zcu.navValue(cg.owner_nav).typeOf(zcu)).?; if (Type.fromInterned(fn_info.return_type).isError(zcu)) { // Functions with an empty error set are emitted with an error code // return type and return zero so they can be function pointers coerced // to functions that return anyerror. const no_err_id = try cg.constInt(.anyerror, 0); return try cg.body.emit(gpa, .OpReturnValue, .{ .value = no_err_id }); } else { return try cg.body.emit(gpa, .OpReturn, {}); } } const operand_id = try cg.resolve(operand); try cg.body.emit(gpa, .OpReturnValue, .{ .value = operand_id }); } fn airRetLoad(cg: *CodeGen, inst: Air.Inst.Index) !void { const gpa = cg.module.gpa; const zcu = cg.module.zcu; const un_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op; const ptr_ty = cg.typeOf(un_op); const ret_ty = ptr_ty.childType(zcu); if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) { const fn_info = zcu.typeToFunc(zcu.navValue(cg.owner_nav).typeOf(zcu)).?; if (Type.fromInterned(fn_info.return_type).isError(zcu)) { // Functions with an empty error set are emitted with an error code // return type and return zero so they can be function pointers coerced // to functions that return anyerror. const no_err_id = try cg.constInt(.anyerror, 0); return try cg.body.emit(gpa, .OpReturnValue, .{ .value = no_err_id }); } else { return try cg.body.emit(gpa, .OpReturn, {}); } } const ptr = try cg.resolve(un_op); const value = try cg.load(ret_ty, ptr, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) }); try cg.body.emit(gpa, .OpReturnValue, .{ .value = value, }); } fn airTry(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const gpa = cg.module.gpa; const zcu = cg.module.zcu; const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op; const err_union_id = try cg.resolve(pl_op.operand); const extra = cg.air.extraData(Air.Try, pl_op.payload); const body: []const Air.Inst.Index = @ptrCast(cg.air.extra.items[extra.end..][0..extra.data.body_len]); const err_union_ty = cg.typeOf(pl_op.operand); const payload_ty = cg.typeOfIndex(inst); const bool_ty_id = try cg.resolveType(.bool, .direct); const eu_layout = cg.errorUnionLayout(payload_ty); if (!err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) { const err_id = if (eu_layout.payload_has_bits) try cg.extractField(.anyerror, err_union_id, eu_layout.errorFieldIndex()) else err_union_id; const zero_id = try cg.constInt(.anyerror, 0); const is_err_id = cg.module.allocId(); try cg.body.emit(gpa, .OpINotEqual, .{ .id_result_type = bool_ty_id, .id_result = is_err_id, .operand_1 = err_id, .operand_2 = zero_id, }); // When there is an error, we must evaluate `body`. Otherwise we must continue // with the current body. // Just generate a new block here, then generate a new block inline for the remainder of the body. const err_block = cg.module.allocId(); const ok_block = cg.module.allocId(); switch (cg.control_flow) { .structured => { // According to AIR documentation, this block is guaranteed // to not break and end in a return instruction. Thus, // for structured control flow, we can just naively use // the ok block as the merge block here. try cg.body.emit(gpa, .OpSelectionMerge, .{ .merge_block = ok_block, .selection_control = .{}, }); }, .unstructured => {}, } try cg.body.emit(gpa, .OpBranchConditional, .{ .condition = is_err_id, .true_label = err_block, .false_label = ok_block, }); try cg.beginSpvBlock(err_block); try cg.genBody(body); try cg.beginSpvBlock(ok_block); } if (!eu_layout.payload_has_bits) { return null; } // Now just extract the payload, if required. return try cg.extractField(payload_ty, err_union_id, eu_layout.payloadFieldIndex()); } fn airErrUnionErr(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const operand_id = try cg.resolve(ty_op.operand); const err_union_ty = cg.typeOf(ty_op.operand); const err_ty_id = try cg.resolveType(.anyerror, .direct); if (err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) { // No error possible, so just return undefined. return try cg.module.constUndef(err_ty_id); } const payload_ty = err_union_ty.errorUnionPayload(zcu); const eu_layout = cg.errorUnionLayout(payload_ty); if (!eu_layout.payload_has_bits) { // If no payload, error union is represented by error set. return operand_id; } return try cg.extractField(.anyerror, operand_id, eu_layout.errorFieldIndex()); } fn airErrUnionPayload(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const operand_id = try cg.resolve(ty_op.operand); const payload_ty = cg.typeOfIndex(inst); const eu_layout = cg.errorUnionLayout(payload_ty); if (!eu_layout.payload_has_bits) { return null; // No error possible. } return try cg.extractField(payload_ty, operand_id, eu_layout.payloadFieldIndex()); } fn airWrapErrUnionErr(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const err_union_ty = cg.typeOfIndex(inst); const payload_ty = err_union_ty.errorUnionPayload(zcu); const operand_id = try cg.resolve(ty_op.operand); const eu_layout = cg.errorUnionLayout(payload_ty); if (!eu_layout.payload_has_bits) { return operand_id; } const payload_ty_id = try cg.resolveType(payload_ty, .indirect); var members: [2]Id = undefined; members[eu_layout.errorFieldIndex()] = operand_id; members[eu_layout.payloadFieldIndex()] = try cg.module.constUndef(payload_ty_id); var types: [2]Type = undefined; types[eu_layout.errorFieldIndex()] = .anyerror; types[eu_layout.payloadFieldIndex()] = payload_ty; const err_union_ty_id = try cg.resolveType(err_union_ty, .direct); return try cg.constructComposite(err_union_ty_id, &members); } fn airWrapErrUnionPayload(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const err_union_ty = cg.typeOfIndex(inst); const operand_id = try cg.resolve(ty_op.operand); const payload_ty = cg.typeOf(ty_op.operand); const eu_layout = cg.errorUnionLayout(payload_ty); if (!eu_layout.payload_has_bits) { return try cg.constInt(.anyerror, 0); } var members: [2]Id = undefined; members[eu_layout.errorFieldIndex()] = try cg.constInt(.anyerror, 0); members[eu_layout.payloadFieldIndex()] = try cg.convertToIndirect(payload_ty, operand_id); var types: [2]Type = undefined; types[eu_layout.errorFieldIndex()] = .anyerror; types[eu_layout.payloadFieldIndex()] = payload_ty; const err_union_ty_id = try cg.resolveType(err_union_ty, .direct); return try cg.constructComposite(err_union_ty_id, &members); } fn airIsNull(cg: *CodeGen, inst: Air.Inst.Index, is_pointer: bool, pred: enum { is_null, is_non_null }) !?Id { const zcu = cg.module.zcu; const un_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op; const operand_id = try cg.resolve(un_op); const operand_ty = cg.typeOf(un_op); const optional_ty = if (is_pointer) operand_ty.childType(zcu) else operand_ty; const payload_ty = optional_ty.optionalChild(zcu); const bool_ty_id = try cg.resolveType(.bool, .direct); if (optional_ty.optionalReprIsPayload(zcu)) { // Pointer payload represents nullability: pointer or slice. const loaded_id = if (is_pointer) try cg.load(optional_ty, operand_id, .{}) else operand_id; const ptr_ty = if (payload_ty.isSlice(zcu)) payload_ty.slicePtrFieldType(zcu) else payload_ty; const ptr_id = if (payload_ty.isSlice(zcu)) try cg.extractField(ptr_ty, loaded_id, 0) else loaded_id; const ptr_ty_id = try cg.resolveType(ptr_ty, .direct); const null_id = try cg.module.constNull(ptr_ty_id); const null_tmp: Temporary = .init(ptr_ty, null_id); const ptr: Temporary = .init(ptr_ty, ptr_id); const op: std.math.CompareOperator = switch (pred) { .is_null => .eq, .is_non_null => .neq, }; const result = try cg.cmp(op, ptr, null_tmp); return try result.materialize(cg); } const is_non_null_id = blk: { if (is_pointer) { if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) { const storage_class = cg.module.storageClass(operand_ty.ptrAddressSpace(zcu)); const bool_indirect_ty_id = try cg.resolveType(.bool, .indirect); const bool_ptr_ty_id = try cg.module.ptrType(bool_indirect_ty_id, storage_class); const tag_ptr_id = try cg.accessChain(bool_ptr_ty_id, operand_id, &.{1}); break :blk try cg.load(.bool, tag_ptr_id, .{}); } break :blk try cg.load(.bool, operand_id, .{}); } break :blk if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) try cg.extractField(.bool, operand_id, 1) else // Optional representation is bool indicating whether the optional is set // Optionals with no payload are represented as an (indirect) bool, so convert // it back to the direct bool here. try cg.convertToDirect(.bool, operand_id); }; return switch (pred) { .is_null => blk: { // Invert condition const result_id = cg.module.allocId(); try cg.body.emit(cg.module.gpa, .OpLogicalNot, .{ .id_result_type = bool_ty_id, .id_result = result_id, .operand = is_non_null_id, }); break :blk result_id; }, .is_non_null => is_non_null_id, }; } fn airIsErr(cg: *CodeGen, inst: Air.Inst.Index, pred: enum { is_err, is_non_err }) !?Id { const zcu = cg.module.zcu; const un_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].un_op; const operand_id = try cg.resolve(un_op); const err_union_ty = cg.typeOf(un_op); if (err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) { return try cg.constBool(pred == .is_non_err, .direct); } const payload_ty = err_union_ty.errorUnionPayload(zcu); const eu_layout = cg.errorUnionLayout(payload_ty); const bool_ty_id = try cg.resolveType(.bool, .direct); const error_id = if (!eu_layout.payload_has_bits) operand_id else try cg.extractField(.anyerror, operand_id, eu_layout.errorFieldIndex()); const result_id = cg.module.allocId(); switch (pred) { inline else => |pred_ct| try cg.body.emit( cg.module.gpa, switch (pred_ct) { .is_err => .OpINotEqual, .is_non_err => .OpIEqual, }, .{ .id_result_type = bool_ty_id, .id_result = result_id, .operand_1 = error_id, .operand_2 = try cg.constInt(.anyerror, 0), }, ), } return result_id; } fn airUnwrapOptional(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const operand_id = try cg.resolve(ty_op.operand); const optional_ty = cg.typeOf(ty_op.operand); const payload_ty = cg.typeOfIndex(inst); if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) return null; if (optional_ty.optionalReprIsPayload(zcu)) { return operand_id; } return try cg.extractField(payload_ty, operand_id, 0); } fn airUnwrapOptionalPtr(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const operand_id = try cg.resolve(ty_op.operand); const operand_ty = cg.typeOf(ty_op.operand); const optional_ty = operand_ty.childType(zcu); const payload_ty = optional_ty.optionalChild(zcu); const result_ty = cg.typeOfIndex(inst); const result_ty_id = try cg.resolveType(result_ty, .direct); if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) { // There is no payload, but we still need to return a valid pointer. // We can just return anything here, so just return a pointer to the operand. return try cg.bitCast(result_ty, operand_ty, operand_id); } if (optional_ty.optionalReprIsPayload(zcu)) { // They are the same value. return try cg.bitCast(result_ty, operand_ty, operand_id); } return try cg.accessChain(result_ty_id, operand_id, &.{0}); } fn airWrapOptional(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const ty_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_op; const payload_ty = cg.typeOf(ty_op.operand); if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) { return try cg.constBool(true, .indirect); } const operand_id = try cg.resolve(ty_op.operand); const optional_ty = cg.typeOfIndex(inst); if (optional_ty.optionalReprIsPayload(zcu)) { return operand_id; } const payload_id = try cg.convertToIndirect(payload_ty, operand_id); const members = [_]Id{ payload_id, try cg.constBool(true, .indirect) }; const optional_ty_id = try cg.resolveType(optional_ty, .direct); return try cg.constructComposite(optional_ty_id, &members); } fn airSwitchBr(cg: *CodeGen, inst: Air.Inst.Index) !void { const gpa = cg.module.gpa; const pt = cg.pt; const zcu = cg.module.zcu; const target = cg.module.zcu.getTarget(); const switch_br = cg.air.unwrapSwitch(inst); const cond_ty = cg.typeOf(switch_br.operand); const cond = try cg.resolve(switch_br.operand); var cond_indirect = try cg.convertToIndirect(cond_ty, cond); const cond_words: u32 = switch (cond_ty.zigTypeTag(zcu)) { .bool, .error_set => 1, .int => blk: { const bits = cond_ty.intInfo(zcu).bits; const backing_bits, const big_int = cg.module.backingIntBits(bits); if (big_int) return cg.todo("implement composite int switch", .{}); break :blk if (backing_bits <= 32) 1 else 2; }, .@"enum" => blk: { const int_ty = cond_ty.intTagType(zcu); const int_info = int_ty.intInfo(zcu); const backing_bits, const big_int = cg.module.backingIntBits(int_info.bits); if (big_int) return cg.todo("implement composite int switch", .{}); break :blk if (backing_bits <= 32) 1 else 2; }, .pointer => blk: { cond_indirect = try cg.intFromPtr(cond_indirect); break :blk target.ptrBitWidth() / 32; }, // TODO: Figure out which types apply here, and work around them as we can only do integers. else => return cg.todo("implement switch for type {s}", .{@tagName(cond_ty.zigTypeTag(zcu))}), }; const num_cases = switch_br.cases_len; // Compute the total number of arms that we need. // Zig switches are grouped by condition, so we need to loop through all of them const num_conditions = blk: { var num_conditions: u32 = 0; var it = switch_br.iterateCases(); while (it.next()) |case| { if (case.ranges.len > 0) return cg.todo("switch with ranges", .{}); num_conditions += @intCast(case.items.len); } break :blk num_conditions; }; // First, pre-allocate the labels for the cases. const case_labels = cg.module.allocIds(num_cases); // We always need the default case - if zig has none, we will generate unreachable there. const default = cg.module.allocId(); const merge_label = switch (cg.control_flow) { .structured => cg.module.allocId(), .unstructured => null, }; if (cg.control_flow == .structured) { try cg.body.emit(gpa, .OpSelectionMerge, .{ .merge_block = merge_label.?, .selection_control = .{}, }); } // Emit the instruction before generating the blocks. try cg.body.emitRaw(gpa, .OpSwitch, 2 + (cond_words + 1) * num_conditions); cg.body.writeOperand(Id, cond_indirect); cg.body.writeOperand(Id, default); // Emit each of the cases { var it = switch_br.iterateCases(); while (it.next()) |case| { // SPIR-V needs a literal here, which' width depends on the case condition. const label = case_labels.at(case.idx); for (case.items) |item| { const value = (try cg.air.value(item, pt)) orelse unreachable; const int_val: u64 = switch (cond_ty.zigTypeTag(zcu)) { .bool, .int => if (cond_ty.isSignedInt(zcu)) @bitCast(value.toSignedInt(zcu)) else value.toUnsignedInt(zcu), .@"enum" => blk: { // TODO: figure out of cond_ty is correct (something with enum literals) break :blk (try value.intFromEnum(cond_ty, pt)).toUnsignedInt(zcu); // TODO: composite integer constants }, .error_set => value.getErrorInt(zcu), .pointer => value.toUnsignedInt(zcu), else => unreachable, }; const int_lit: spec.LiteralContextDependentNumber = switch (cond_words) { 1 => .{ .uint32 = @intCast(int_val) }, 2 => .{ .uint64 = int_val }, else => unreachable, }; cg.body.writeOperand(spec.LiteralContextDependentNumber, int_lit); cg.body.writeOperand(Id, label); } } } var incoming_structured_blocks: std.ArrayListUnmanaged(ControlFlow.Structured.Block.Incoming) = .empty; defer incoming_structured_blocks.deinit(gpa); if (cg.control_flow == .structured) { try incoming_structured_blocks.ensureUnusedCapacity(gpa, num_cases + 1); } // Now, finally, we can start emitting each of the cases. var it = switch_br.iterateCases(); while (it.next()) |case| { const label = case_labels.at(case.idx); try cg.beginSpvBlock(label); switch (cg.control_flow) { .structured => { const next_block = try cg.genStructuredBody(.selection, case.body); incoming_structured_blocks.appendAssumeCapacity(.{ .src_label = cg.block_label, .next_block = next_block, }); try cg.body.emit(gpa, .OpBranch, .{ .target_label = merge_label.? }); }, .unstructured => { try cg.genBody(case.body); }, } } const else_body = it.elseBody(); try cg.beginSpvBlock(default); if (else_body.len != 0) { switch (cg.control_flow) { .structured => { const next_block = try cg.genStructuredBody(.selection, else_body); incoming_structured_blocks.appendAssumeCapacity(.{ .src_label = cg.block_label, .next_block = next_block, }); try cg.body.emit(gpa, .OpBranch, .{ .target_label = merge_label.? }); }, .unstructured => { try cg.genBody(else_body); }, } } else { try cg.body.emit(gpa, .OpUnreachable, {}); } if (cg.control_flow == .structured) { try cg.beginSpvBlock(merge_label.?); const next_block = try cg.structuredNextBlock(incoming_structured_blocks.items); try cg.structuredBreak(next_block); } } fn airUnreach(cg: *CodeGen) !void { try cg.body.emit(cg.module.gpa, .OpUnreachable, {}); } fn airDbgStmt(cg: *CodeGen, inst: Air.Inst.Index) !void { const zcu = cg.module.zcu; const dbg_stmt = cg.air.instructions.items(.data)[@intFromEnum(inst)].dbg_stmt; const path = zcu.navFileScope(cg.owner_nav).sub_file_path; if (zcu.comp.config.root_strip) return; try cg.body.emit(cg.module.gpa, .OpLine, .{ .file = try cg.module.debugString(path), .line = cg.base_line + dbg_stmt.line + 1, .column = dbg_stmt.column + 1, }); } fn airDbgInlineBlock(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const zcu = cg.module.zcu; const inst_datas = cg.air.instructions.items(.data); const extra = cg.air.extraData(Air.DbgInlineBlock, inst_datas[@intFromEnum(inst)].ty_pl.payload); const old_base_line = cg.base_line; defer cg.base_line = old_base_line; cg.base_line = zcu.navSrcLine(zcu.funcInfo(extra.data.func).owner_nav); return cg.lowerBlock(inst, @ptrCast(cg.air.extra.items[extra.end..][0..extra.data.body_len])); } fn airDbgVar(cg: *CodeGen, inst: Air.Inst.Index) !void { const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op; const target_id = try cg.resolve(pl_op.operand); const name: Air.NullTerminatedString = @enumFromInt(pl_op.payload); try cg.module.debugName(target_id, name.toSlice(cg.air)); } fn airAssembly(cg: *CodeGen, inst: Air.Inst.Index) !?Id { const gpa = cg.module.gpa; const zcu = cg.module.zcu; const ty_pl = cg.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl; const extra = cg.air.extraData(Air.Asm, ty_pl.payload); const is_volatile = extra.data.flags.is_volatile; const outputs_len = extra.data.flags.outputs_len; if (!is_volatile and cg.liveness.isUnused(inst)) return null; var extra_i: usize = extra.end; const outputs: []const Air.Inst.Ref = @ptrCast(cg.air.extra.items[extra_i..][0..outputs_len]); extra_i += outputs.len; const inputs: []const Air.Inst.Ref = @ptrCast(cg.air.extra.items[extra_i..][0..extra.data.inputs_len]); extra_i += inputs.len; if (outputs.len > 1) { return cg.todo("implement inline asm with more than 1 output", .{}); } var ass: Assembler = .{ .cg = cg }; defer ass.deinit(); var output_extra_i = extra_i; for (outputs) |output| { if (output != .none) { return cg.todo("implement inline asm with non-returned output", .{}); } const extra_bytes = std.mem.sliceAsBytes(cg.air.extra.items[extra_i..]); const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(cg.air.extra.items[extra_i..]), 0); const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0); extra_i += (constraint.len + name.len + (2 + 3)) / 4; // TODO: Record output and use it somewhere. } for (inputs) |input| { const extra_bytes = std.mem.sliceAsBytes(cg.air.extra.items[extra_i..]); const constraint = std.mem.sliceTo(extra_bytes, 0); const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0); // This equation accounts for the fact that even if we have exactly 4 bytes // for the string, we still use the next u32 for the null terminator. extra_i += (constraint.len + name.len + (2 + 3)) / 4; const input_ty = cg.typeOf(input); if (std.mem.eql(u8, constraint, "c")) { // constant const val = (try cg.air.value(input, cg.pt)) orelse { return cg.fail("assembly inputs with 'c' constraint have to be compile-time known", .{}); }; // TODO: This entire function should be handled a bit better... const ip = &zcu.intern_pool; switch (ip.indexToKey(val.toIntern())) { .int_type, .ptr_type, .array_type, .vector_type, .opt_type, .anyframe_type, .error_union_type, .simple_type, .struct_type, .union_type, .opaque_type, .enum_type, .func_type, .error_set_type, .inferred_error_set_type, => unreachable, // types, not values .undef => return cg.fail("assembly input with 'c' constraint cannot be undefined", .{}), .int => try ass.value_map.put(gpa, name, .{ .constant = @intCast(val.toUnsignedInt(zcu)) }), .enum_literal => |str| try ass.value_map.put(gpa, name, .{ .string = str.toSlice(ip) }), else => unreachable, // TODO } } else if (std.mem.eql(u8, constraint, "t")) { // type if (input_ty.zigTypeTag(zcu) == .type) { // This assembly input is a type instead of a value. // That's fine for now, just make sure to resolve it as such. const val = (try cg.air.value(input, cg.pt)).?; const ty_id = try cg.resolveType(val.toType(), .direct); try ass.value_map.put(gpa, name, .{ .ty = ty_id }); } else { const ty_id = try cg.resolveType(input_ty, .direct); try ass.value_map.put(gpa, name, .{ .ty = ty_id }); } } else { if (input_ty.zigTypeTag(zcu) == .type) { return cg.fail("use the 't' constraint to supply types to SPIR-V inline assembly", .{}); } const val_id = try cg.resolve(input); try ass.value_map.put(gpa, name, .{ .value = val_id }); } } // TODO: do something with clobbers _ = extra.data.clobbers; const asm_source = std.mem.sliceAsBytes(cg.air.extra.items[extra_i..])[0..extra.data.source_len]; ass.assemble(asm_source) catch |err| switch (err) { error.AssembleFail => { // TODO: For now the compiler only supports a single error message per decl, // so to translate the possible multiple errors from the assembler, emit // them as notes here. // TODO: Translate proper error locations. assert(ass.errors.items.len != 0); assert(cg.error_msg == null); const src_loc = zcu.navSrcLoc(cg.owner_nav); cg.error_msg = try Zcu.ErrorMsg.create(zcu.gpa, src_loc, "failed to assemble SPIR-V inline assembly", .{}); const notes = try zcu.gpa.alloc(Zcu.ErrorMsg, ass.errors.items.len); // Sub-scope to prevent `return error.CodegenFail` from running the errdefers. { errdefer zcu.gpa.free(notes); var i: usize = 0; errdefer for (notes[0..i]) |*note| { note.deinit(zcu.gpa); }; while (i < ass.errors.items.len) : (i += 1) { notes[i] = try Zcu.ErrorMsg.init(zcu.gpa, src_loc, "{s}", .{ass.errors.items[i].msg}); } } cg.error_msg.?.notes = notes; return error.CodegenFail; }, else => |others| return others, }; for (outputs) |output| { _ = output; const extra_bytes = std.mem.sliceAsBytes(cg.air.extra.items[output_extra_i..]); const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(cg.air.extra.items[output_extra_i..]), 0); const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0); output_extra_i += (constraint.len + name.len + (2 + 3)) / 4; const result = ass.value_map.get(name) orelse return { return cg.fail("invalid asm output '{s}'", .{name}); }; switch (result) { .just_declared, .unresolved_forward_reference => unreachable, .ty => return cg.fail("cannot return spir-v type as value from assembly", .{}), .value => |ref| return ref, .constant, .string => return cg.fail("cannot return constant from assembly", .{}), } // TODO: Multiple results // TODO: Check that the output type from assembly is the same as the type actually expected by Zig. } return null; } fn airCall(cg: *CodeGen, inst: Air.Inst.Index, modifier: std.builtin.CallModifier) !?Id { _ = modifier; const gpa = cg.module.gpa; const zcu = cg.module.zcu; const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op; const extra = cg.air.extraData(Air.Call, pl_op.payload); const args: []const Air.Inst.Ref = @ptrCast(cg.air.extra.items[extra.end..][0..extra.data.args_len]); const callee_ty = cg.typeOf(pl_op.operand); const zig_fn_ty = switch (callee_ty.zigTypeTag(zcu)) { .@"fn" => callee_ty, .pointer => return cg.fail("cannot call function pointers", .{}), else => unreachable, }; const fn_info = zcu.typeToFunc(zig_fn_ty).?; const return_type = fn_info.return_type; const result_type_id = try cg.resolveFnReturnType(.fromInterned(return_type)); const result_id = cg.module.allocId(); const callee_id = try cg.resolve(pl_op.operand); comptime assert(zig_call_abi_ver == 3); const scratch_top = cg.id_scratch.items.len; defer cg.id_scratch.shrinkRetainingCapacity(scratch_top); const params = try cg.id_scratch.addManyAsSlice(gpa, args.len); var n_params: usize = 0; for (args) |arg| { // Note: resolve() might emit instructions, so we need to call it // before starting to emit OpFunctionCall instructions. Hence the // temporary params buffer. const arg_ty = cg.typeOf(arg); if (!arg_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue; const arg_id = try cg.resolve(arg); params[n_params] = arg_id; n_params += 1; } try cg.body.emit(gpa, .OpFunctionCall, .{ .id_result_type = result_type_id, .id_result = result_id, .function = callee_id, .id_ref_3 = params[0..n_params], }); if (cg.liveness.isUnused(inst) or !Type.fromInterned(return_type).hasRuntimeBitsIgnoreComptime(zcu)) { return null; } return result_id; } fn builtin3D( cg: *CodeGen, result_ty: Type, builtin: spec.BuiltIn, dimension: u32, out_of_range_value: anytype, ) !Id { const gpa = cg.module.gpa; if (dimension >= 3) return try cg.constInt(result_ty, out_of_range_value); const u32_ty_id = try cg.module.intType(.unsigned, 32); const vec_ty_id = try cg.module.vectorType(3, u32_ty_id); const ptr_ty_id = try cg.module.ptrType(vec_ty_id, .input); const spv_decl_index = try cg.module.builtin(ptr_ty_id, builtin, .input); try cg.module.decl_deps.append(gpa, spv_decl_index); const ptr_id = cg.module.declPtr(spv_decl_index).result_id; const vec_id = cg.module.allocId(); try cg.body.emit(gpa, .OpLoad, .{ .id_result_type = vec_ty_id, .id_result = vec_id, .pointer = ptr_id, }); return try cg.extractVectorComponent(result_ty, vec_id, dimension); } fn airWorkItemId(cg: *CodeGen, inst: Air.Inst.Index) !?Id { if (cg.liveness.isUnused(inst)) return null; const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op; const dimension = pl_op.payload; return try cg.builtin3D(.u32, .local_invocation_id, dimension, 0); } // TODO: this must be an OpConstant/OpSpec but even then the driver crashes. fn airWorkGroupSize(cg: *CodeGen, inst: Air.Inst.Index) !?Id { if (cg.liveness.isUnused(inst)) return null; const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op; const dimension = pl_op.payload; return try cg.builtin3D(.u32, .workgroup_id, dimension, 0); } fn airWorkGroupId(cg: *CodeGen, inst: Air.Inst.Index) !?Id { if (cg.liveness.isUnused(inst)) return null; const pl_op = cg.air.instructions.items(.data)[@intFromEnum(inst)].pl_op; const dimension = pl_op.payload; return try cg.builtin3D(.u32, .workgroup_id, dimension, 0); } fn typeOf(cg: *CodeGen, inst: Air.Inst.Ref) Type { const zcu = cg.module.zcu; return cg.air.typeOf(inst, &zcu.intern_pool); } fn typeOfIndex(cg: *CodeGen, inst: Air.Inst.Index) Type { const zcu = cg.module.zcu; return cg.air.typeOfIndex(inst, &zcu.intern_pool); }