The WebAssembly spec requires signed LEB128 to be encoded up to a maximum number of bytes (max 5 bytes for i32, max 10 bytes for i64) and that "unused" bits are all 0 if the number is positive and all 1 if the number is negative. The Zig LEB128 implementation already enforces the max number of bytes and does check the unused bytes https://github.com/ziglang/zig/blob/master/lib/std/leb128.zig#L70-L79.
However, the WebAssembly test suite has a number of tests that were failing validation (expecting the wasm module to fail validation, but when running the tests, those examples were actually passing validation):
https://github.com/malcolmstill/foxwren/blob/master/test/testsuite/binary-leb128.wast#L893-L902https://github.com/malcolmstill/foxwren/blob/master/test/testsuite/binary-leb128.wast#L934-L943
Notably the failures are both cases of negative numbers and the top 4 bits of the last byte are zero. And I believe this is the issue: we're only currently checking the "unused" / remaining_bits if we overflow, but in the case of 0x0_ no overflow happens and so the bits go unchecked.
In other words:
\xff\xff\xff\xff\7f rightly successfully decodes (because it overflows and the remaining bits are 0b1111)
\xff\xff\xff\xff\6f rightly errors with overflow (because it overflows and the remaining bits are 0b1110)
\xff\xff\xff\xff\0f incorrectly decodes when it should error (because the top 4 bits are all 0, and so no overflow occurs and no check that the unused bits are 1 happens)
This PR adds a the remaining_bits check in an else branch of the @shlWithOverflow when we're looking at the last byte and the number being decoded is negative.
Note: this means a couple of the test cases in leb128.zig that are down as decoding shouldn't actually decode so I added the appropriate 1 bits.
This is a property which solely belongs to pointers to functions,
not to the functions themselves. This cannot be properly represented by
stage 2 at the moment, as type with zigTypeTag() == .Fn is overloaded for
for function pointers and function prototypes.
Validity checks are also based on context; whether the entity being validated
is a mutable/constant value, a pointer (that is ascripted with an addrspace
attribute) or a function with an addrspace attribute. Error messages are
relatively simple for now.
Adds AST generation for address spaces on pointers, function prototypes,
function declarations and variable declarations. In the latter two cases,
declaration properties were already stored more efficiently in a declaration
structure. To accomodate these for address spaces, the bit indicating presence
of a linksection attribute has been extended to include either linksection,
address space, or both.
I believe these are Linux specific so they will need to be os-gated
in `elf.zig` at some point, but I reckon it should be fine to have
them as-is right now since the ELF linker work will mainly be done
on x86-64 Linux at first.
* test runner is improved to respect `error.SkipZigTest`
* start code is improved to `@setAlignStack(16)` before calling main()
* the newly passing behavior test has a workaround for the fact that
stage2 cannot yet call `std.Target.x86.featureSetHas()` at comptime.
This is blocking on comptime closures. The workaround is that there
is a new decl `@import("builtin").stage2_x86_cx16` which is a `bool`.
* Implement `@setAlignStack`. This language feature should be re-evaluated
at some point - I'll file an issue for it.
* LLVM backend: apply/remove the cold attribute and noinline attribute
where appropriate.
* LLVM backend: loads and stores are properly annotated with alignment
and volatile attributes.
* LLVM backend: allocas are properly annotated with alignment.
* Type: fix integers reporting wrong alignment for 256-bit integers and
beyond. Once you get to 16 byte aligned, there is no further
alignment for larger integers.
This commit reverts 6d37ae95edc06f15e4e77f64e8e637dd5d269183 and
8f8294a809f9d975735377e7bfcc2c47ccfc4cb7. I don't know why they caused a
failure but that investigation can happen while the CI is green.