* scopes properly inherit inlining information
* compile errors of inline function calls are properly attached to the
caller rather than the callee.
- added a test case for this
* --watch still opens a repl if compile errors happen.
Instead of freeing ZIR after semantic analysis, we keep it around so
that it can be used for comptime calls, inline calls, and generic
function calls. ZIR memory is now managed by the Decl arena.
Debug dump() functions are conditionally compiled; only available in
Debug builds of the compiler.
Add a test for an inline function call.
* remove the -Ddump-zir thing. that's handled through --verbose-ir
* rework Fn to have an is_inline flag without requiring any more memory
on the heap per function.
* implement a rough first version of dumping typed zir (tzir) which is
a lot more helpful for debugging than what we had before. We don't
have a way to parse it though.
* keep track of whether the inline-ness of a function changes because
if it does we have to go update callsites.
* add compile error for inline and export used together.
inline function calls and comptime function calls are implemented the
same way. A block instruction is set up to capture the result, and then
a scope is set up that has a flag for is_comptime and some state if the
scope is being inlined.
when analyzing `ret` instructions, zig looks for inlining state in the
scope, and if found, treats `ret` as a `break` instruction instead, with
the target block being the one set up at the inline callsite.
Follow-up items:
* Complete out the debug TZIR dumping code.
* Don't redundantly generate ZIR for each inline/comptime function
call. Instead we should add a new state enum tag to Fn.
* comptime and inlining branch quotas.
* Add more test cases.
* Function calls that happen in a comptime scope get called at
compile-time. We do this by putting the parameters in place as
constant values and then running regular function analysis on the
body.
* Added `Scope.Block.dump()` for debugging purposes.
* Fixed some code to call `identifierTokenString` rather than
`tokenSlice`, making it work for `@""` syntax.
* Implemented `Value.copy` for big integers.
Follow-up issues to tackle:
* Adding compile errors to the callsite instead of the callee Decl.
* Proper error notes for "called from here".
- Related: #7555
* Branch quotas.
* ZIR support?
This patch introduces the following new things:
Types:
- inferred_alloc
- This is a special value that tracks a set of types that have been stored
to an inferred allocation. It does not support most of the normal type queries.
However it does respond to `isConstPtr`, `ptrSize`, `zigTypeTag`, etc.
- The payload for this type simply points to the corresponding Value
payload.
Values:
- inferred_alloc
- This is a special value that tracks a set of types that have been stored
to an inferred allocation. It does not support any of the normal value queries.
ZIR instructions:
- store_to_inferred_ptr,
- Same as `store` but the type of the value being stored will be used to infer
the pointer type.
- resolve_inferred_alloc
- Each `store_to_inferred_ptr` puts the type of the stored value into a set,
and then `resolve_inferred_alloc` triggers peer type resolution on the set.
The operand is a `alloc_inferred` or `alloc_inferred_mut` instruction, which
is the allocation that needs to have its type inferred.
Changes to the C backend:
* Implements the bitcast instruction. If the source and dest types
are both pointers, uses a cast, otherwise uses memcpy.
* Tests are run with -Wno-declaration-after-statement. Someday we can
conform to this but not today.
In ZIR form it looks like this:
```zir
fn_body main { // unanalyzed
%0 = dbg_stmt()
=>%1 = alloc_inferred()
%2 = declval_in_module(Decl(add))
%3 = deref(%2)
%4 = param_type(%3, 0)
%5 = const(TypedValue{ .ty = comptime_int, .val = 1})
%6 = as(%4, %5)
%7 = param_type(%3, 1)
%8 = const(TypedValue{ .ty = comptime_int, .val = 2})
%9 = as(%7, %8)
%10 = call(%3, [%6, %9], modifier=auto)
=>%11 = store_to_inferred_ptr(%1, %10)
=>%12 = resolve_inferred_alloc(%1)
%13 = dbg_stmt()
%14 = ret_type()
%15 = const(TypedValue{ .ty = comptime_int, .val = 3})
%16 = sub(%10, %15)
%17 = as(%14, %16)
%18 = return(%17)
} // fn_body main
```
I have not played around with very many test cases yet. Some interesting
ones that I want to look at before merging:
```zig
var x = blk: {
var y = foo();
y.a = 1;
break :blk y;
};
```
In the above test case, x and y are supposed to alias.
```zig
var x = if (bar()) blk: {
var y = foo();
y.a = 1;
break :blk y;
} else blk: {
var z = baz();
z.b = 1;
break :blk z;
};
```
In the above test case, x, y, and z are supposed to alias.
I also haven't tested with `var` instead of `const` yet.
This is the same as the previous commit but for Value instead of Type.
Add `Value.castTag` and note that it is preferable to call than
`Value.cast`. This matches other abstractions in the codebase.
Added a convenience function `Value.Tag.create` which really cleans up
the callsites of creating `Value` objects.
`Value` tags can now share payload types. This is in preparation for
another improvement that I want to do.
Add `Type.castTag` and note that it is preferable to call than
`Type.cast`. This matches other abstractions in the codebase.
Added a convenience function `Type.Tag.create` which really cleans up
the callsites of creating `Type` objects.
`Type` payloads can now share types. This is in preparation for another
improvement that I want to do.
* Module: improve doc comments
* C backend: improve const-correctness
* C backend: introduce renderTypeAndName
* C backend: put `static` on functions when appropriate
* C backend: fix not handling errors in genBinOp
* C backend: handle more IR instructions
- alloc, store, boolean comparisons, ret_ptr
* C backend: call instruction properly stores its result
* test harness: ensure execution tests have empty stderr
The addition of `addDeclErr` introduced a memory leak at every call
site, and I also would like to push back on having more than 1
compilation error per `Decl`.
This reverts commit 1634d45f1d53c8d7bfefa56ab4d2fa4cc8218b6d.
Use case:
zig build-exe non_existent_file.zig
Previous behavior:
error.FileNotFound, followed by an error return trace
Behavior after this commit:
error: unable to read non_existent_file.zig: FileNotFound
(end of stderr, exit code 1)
This turns AllErrors.Message into a tagged union which now has the
capability to represent both "plain" errors as well as source-based
errors (with file, line, column, byte offset). The "no entry point found"
error has moved to be a plain error message.
When we get a cache hit for a stage1 compilation, we need to know about
some of the flags such as have_winmain or have_dllmain to know which
subsystem to infer during linking.
To do this, we append a hex-encoded byte into the intentionally-dangling
symlink which contains the cache hash digest rather than a filename. The
hex-encoded byte contains the flags we need to infer the subsystem
during linking.