ML-DSA is a post-quantum signature scheme that was recently
standardized by NIST.
Keys and signatures are pretty large, not making it a drop-in
replacement for classical signature schemes.
But if you are shipping keys that may still be used in 10 years
or whenever large quantum computers able to break ECC arrive,
it that ever happens, and you don't have the ability to replace
these keys, ML-DSA is for you.
Performance is great, verification is faster than Ed25519 / ECDSA.
I tried manual vectorization, but it wasn't worth it, the compiler
does at good job at auto-vectorization already.
This configuration hasn't had much work put into it yet, so is all but
guaranteed to miscompile or crash. Since users are starting to try out
`-fincremental`, and LLVM is still the default backend in many cases,
it's worth having this warning to avoid bug reports like
https://github.com/ziglang/zig/issues/25873.
To match the new default implementation. In fact, I implemented this by
simply dispatching *to* the default implementation after the debug log
guard; no need to complicate things!
This change removes the ref_start_index from the possible enum values of
Index and OptionalIndex. It is not really a index, but a constant that
tells the offset of static Refs, so lets move it where such constant
belongs i.e. to the Ref.
Since the child process is spawned with the tmp directory as its CWD, the child process opens it without DELETE access. On error, the child process would still be alive while the tmp directory is attempting to be deleted, so it would fail with `.SHARING_VIOLATION => return error.FileBusy`.
Fixes arguably the least important part of #22510, since it's only the directory itself that would fail to get deleted, all the files inside would get deleted just fine.
It was not obvious that the KT128/KT256 customization string can be
used to set a key, or what it was designed to be used for at all.
Also properly use key_length and not digest_length for the BLAKE3
key length (no practical changes as they are both 32, but that was
confusing).
Remove unneeded simd_degree copies by the way, and that doesn't need
to be in the public interface.
This seems to work around a very puzzling miscompilation first
present in LLVM 21.x. We already unconditionally add these
clobbers to inline assembly that came from the source, the
valgrind requests should also contain them.
If we use `undefined`, then `netReceive` can `@intCast` the
control slice len to msghdr controllen, which is sometimes `u32`,
even on 64-bit platforms.
`init` just avoids this entirely by setting `control` to an empty
slice rather than undefined.