This is encoded as a primitive AIR instruction to resolve one corner
case: A function may include a `catch { ... }` or `else |err| { ... }`
block but not call any errorable fn. In that case, there is no error
return trace to save the index of and codegen needs to avoid
interacting with the non-existing error trace.
By using a primitive AIR op, we can depend on Liveness to mark this
unused in this corner case.
Rather than lowering float negation as `0.0 - x`.
* Add AIR instruction for float negation.
* Add compiler-rt functions for f128, f80 negation
closes#11853
llvm: dump failed module when -femit-llvm-ir set
print_air:
* print fully qualified name
* use Type.fmt and Value.fmtValue, fmtDebug is useless
TypedValue
* handle anon structs and tuples
* fix bugs
Implements semantic analysis for the new try/try_inline ZIR
instruction. Adds the new try/try_ptr AIR instructions and implements
them for the LLVM backend.
Fixes not calling rvalue() for tryExpr in AstGen.
This is part of an effort to implement #11772.
* outputs can have names and be referenced with template replacements
the same as inputs.
* fix print_air.zig not decoding correctly.
* LLVM backend: use a table for template names for simplicity
The reason for having `@tan` is that we already have `@sin` and `@cos`
because some targets have machine code instructions for them, but in the
case that the implementation needs to go into compiler-rt, sin, cos, and
tan all share a common dependency which includes a table of data. To
avoid duplicating this table of data, we promote tan to become a builtin
alongside sin and cos.
ZIR: The tag enum is at capacity so this commit moves
`field_call_bind_named` to be `extended`. I measured this as one of
the least used tags in the zig codebase.
Fix libc math suffix for `f32` being wrong in both stage1 and stage2.
stage1: add missing libc prefix for float functions.
Rather than allocating Decl objects with an Allocator, we instead allocate
them with a SegmentedList. This provides four advantages:
* Stable memory so that one thread can access a Decl object while another
thread allocates additional Decl objects from this list.
* It allows us to use u32 indexes to reference Decl objects rather than
pointers, saving memory in Type, Value, and dependency sets.
* Using integers to reference Decl objects rather than pointers makes
serialization trivial.
* It provides a unique integer to be used for anonymous symbol names,
avoiding multi-threaded contention on an atomic counter.
* The `@bitCast` workaround is removed in favor of `@ptrCast` properly
doing element casting for slice element types. This required an
enhancement both to stage1 and stage2.
* stage1 incorrectly accepts `.{}` instead of `{}`. stage2 code that
abused this is fixed.
* Make some parameters comptime to support functions in switch
expressions (as opposed to making them function pointers).
* Avoid relying on local temporaries being mutable.
* Workarounds for when stage1 and stage2 disagree on function pointer
types.
* Workaround recursive formatting bug with a `@panic("TODO")`.
* Remove unreachable `else` prongs for some inferred error sets.
All in effort towards #89.
Prior to this, Liveness encoded `asm`, `call`, and `aggregate_init` with
a single 32-bit integer, allowing up to 35 operands (3 are provided by
the regular tomb_bits). However, the Zig language allows function calls
with more than 35 arguments, inline assembly with more than 35 inputs,
and anonymous tuples with more than 35 elements.
The new encoding stores an index to the extra array instead of the bits
directly, and then as many extra elements as needed to encode all the
operands. The MSB is used as a flag to tell which element is the last
one, allowing for 31 bits per element.
Prior to this, print_air did not bother correctly printing tombstones
for these instructions; now it does.
In addition to updating the BigTomb iteration logic in the machine code
backends, this commit extracts the common logic into the Liveness namespace.
This commit introduces a new AIR instruction `cmp_lt_errors_len`. It's
specific to this use case for two reasons:
* The total number of errors is not stable during semantic analysis; it
can only be reliably checked when flush() is called. So the backend
that is lowering the instruction must emit a relocation of some kind
and then populate it during flush().
* The fewer AIR instructions in memory, the better for compiler
performance, so we squish complex meanings into AIR tags without
hesitation.
The instruction is implemented only in the LLVM backend so far. It does
this by creating a simple function which is gutted and re-populated
with each flush().
AstGen now uses ResultLoc.coerced_ty for `@intToError` and Sema does the
coercion.
add_with_overflow and similar functions now have the ty_pl data
attached. The Payload will now be a binary operation and the inst is
expected to return a tuple consisting of the destination integer type
and an overflow bit (u1).
Co-authored-by: Jan Philipp Hafer <jan.hafer@rwth-aachen.de>
The existing `cmp_*` instructions get their result type from `lhs`, but
vector comparison will always return a vector of bools with only the
length derived from its operands. This necessitates the creation of a
new AIR instruction.
Notably, Value.eql and Value.hash are improved to treat NaN as equal to
itself, so that Type/Value can be hash map keys. Likewise float hashing
normalizes the float value before computing the hash.
Adds 2 new AIR instructions:
* dbg_var_ptr
* dbg_var_val
Sema no longer emits dbg_stmt AIR instructions when strip=true.
LLVM backend: fixed lowerPtrToVoid when calling ptrAlignment on
the element type is problematic.
LLVM backend: fixed alloca instructions improperly getting debug
location annotated, causing chaotic debug info behavior.
zig_llvm.cpp: fixed incorrect bindings for a function that should use
unsigned integers for line and column.
A bunch of C test cases regressed because the new dbg_var AIR
instructions caused their operands to be alive, exposing latent bugs.
Mostly it's just a problem that the C backend lowers mutable
and const slices to the same C type, so we need to represent that in the
C backend instead of printing two duplicate typedefs.
* use the real start code for LLVM backend with x86_64-linux
- there is still a check for zig_backend after initializing the TLS
area to skip some stuff.
* introduce new AIR instructions and implement them for the LLVM
backend. They are the same as `call` except with a modifier.
- call_always_tail
- call_never_tail
- call_never_inline
* LLVM backend calls hasRuntimeBitsIgnoringComptime in more places to
avoid unnecessarily depending on comptimeOnly being resolved for some
types.
* LLVM backend: remove duplicate code for setting linkage and value
name. The canonical place for this is in `updateDeclExports`.
* LLVM backend: do some assembly template massaging to make `%%`
rendered as `%`. More hacks will be needed to make inline assembly
catch up with stage1.
* mul_add AIR instruction: use `pl_op` instead of `ty_pl`. The type is
always the same as the operand; no need to waste bytes redundantly
storing the type.
* AstGen: use coerced_ty for all the operands except for one which we
use to communicate the type.
* Sema: use the correct source location for requireRuntimeBlock in
handling of `@mulAdd`.
* native backends: handle liveness even for the functions that are
TODO.
* C backend: implement `@mulAdd`. It lowers to libc calls.
* LLVM backend: make `@mulAdd` handle all float types.
- improved fptrunc and fpext to handle f80 with compiler-rt calls.
* Value.mulAdd: handle all float types and use the `@mulAdd` builtin.
* behavior tests: revert the changes to testing `@mulAdd`. These
changes broke the test coverage, making it only tested at
compile-time.
Improved f80 support:
* std.math.fma handles f80
* move fma functions from freestanding libc to compiler-rt
- add __fmax and fmal
- make __fmax and fmaq only exported when they don't alias fmal.
- make their linkage weak just like the rest of compiler-rt symbols.
* removed `longDoubleIsF128` and replaced it with `longDoubleIs` which
takes a type as a parameter. The implementation is now more accurate
and handles more targets. Similarly, in stage2 the function
CTypes.sizeInBits is more accurate for long double for more targets.
* AIR: use pl_op instead of ty_pl for wasm_memory_size. No need to
store the type because the type is always `u32`.
* AstGen: use coerced_ty for `@wasmMemorySize` and `@wasmMemoryGrow`
and do the coercions in Sema.
* Sema: use more accurate source locations for errors.
* Provide more information in the compiler error message.
* Codegen: use liveness data to avoid lowering unused
`@wasmMemorySize`.
* LLVM backend: add implementation
- I wasn't able to test it because we are hitting a linker error for
`-target wasm32-wasi -fLLVM`.
* C backend: use `zig_unimplemented()` instead of silently doing wrong
behavior for these builtins.
* behavior tests: branch only on stage2_arch for inclusion of the
wasm.zig file. We would change it to `builtin.cpu.arch` but that is
causing a compiler crash on some backends.
This implements the wasm builtins by lowering to builtins that are supported by c-compilers.
In this case: Clang.
This also simplifies the `AIR` instruction as it now uses the payload field of `ty_pl` and `pl_op`
directly to store the index argument rather than storing it inside Extra. This saves us 4 bytes
per builtin call.
Similarly to the other wasm builtin, this implements the grow variation where the memory
index is a comptime known value. The operand as well as the result are runtime values.
This also verifies during semantic analysis the target we're building for is wasm, or else
emits a compilation error. This means that other backends do not have to handle this AIR instruction,
other than the wasm and LLVM backends.
This implements the `wasmMemorySize` builtin, in Sema and the Wasm backend.
The Stage2 implementation differs from stage1 in the way that `index` must be a comptime value.
The stage1 variant is incorrect, as the index is part of the instruction encoding, and therefore,
cannot be a runtime value.
The ZIR instruction `union_init_ptr` is renamed to `union_init`.
I made it always use by-value semantics for now, not taking the time to
invest in result location semantics, in case we decide to change the
rules for unions. This way is much simpler.
There is a new AIR instruction: union_init. This is for a comptime known
tag, runtime-known field value.
vector_init is renamed to aggregate_init, which solves a TODO comment.
Prior to this commit, the AIR arg instruction kept a reference to a ZIR
string index for the corresponding parameter name. This is used by DWARF
emitting code. However, this is a design flaw because we want AIR
objects to be independent from ZIR.
This commit saves the parameter names into memory managed by
`Module.Fn`. This is sub-optimal because we should be able to get the
parameter names from the ZIR for a function without having them
redundantly stored along with `Fn` memory. However the current way that
ZIR param instructions are encoded does not support this case. They
appear in the same ZIR body as the function instruction, just before it.
Instead, they should be embedded within the function instruction, which
will allow this TODO to be solved. That improvement is too big for this
commit, however.
After this there is one last dependency to untangle, which is for inline
assembly. The issue for that is #10784.
Support for f128, comptime_float, and c_longdouble require improvements
to compiler_rt and will implemented in a later PR. Some of the code in
this commit could be made more generic, for instance `llvm.airSqrt`
could probably be `llvm.airUnaryMath`, but let's cross that
bridge when we get to it.