fieldVal handles pointer to pointer to array. This can happen for
example, if a pointer to an array is used as the condition expression of
a for loop.
resolveStructFully handles tuples (by doing nothing).
fixed Type comparison for tuples to handle comptime fields properly.
* resolve_inferred_alloc now gives a proper mutability attribute to the
corresponding alloc instruction. Previously, it would fail to mark
things const.
* slicing: fix the detection for when the end index equals the length
of the underlying object. Previously it was using `end - start` but
it should just use the end index directly. It also takes into account
when slicing a comptime-known slice.
* `Type.sentinel`: fix not handling all slice tags
AstGen:
* rename the known_has_bits flag to known_non_opv to make it better
reflect what it actually means.
* add a known_comptime_only flag.
* make the flags take advantage of identifiers of primitives and the
fact that zig has no shadowing.
* correct the known_non_opv flag for function bodies.
Sema:
* Rename `hasCodeGenBits` to `hasRuntimeBits` to better reflect what it
does.
- This function got a bit more complicated in this commit because of
the duality of function bodies: on one hand they have runtime bits,
but on the other hand they require being comptime known.
* WipAnonDecl now takes a LazySrcDecl parameter and performs the type
resolutions that it needs during finish().
* Implement comptime `@ptrToInt`.
Codegen:
* Improved handling of lowering decl_ref; make it work for
comptime-known ptr-to-int values.
- This same change had to be made many different times; perhaps we
should look into merging the implementations of `genTypedValue`
across x86, arm, aarch64, and riscv.
This commit updates stage2 to enforce the property that the syntax
`fn()void` is a function *body* not a *pointer*. To get a pointer, the
syntax `*const fn()void` is required.
ZIR puts function alignment into the func instruction rather than the
decl because this way it makes it into function types. LLVM backend
respects function alignments.
Struct and Union have methods `fieldSrcLoc` to help look up source
locations of their fields. These trigger full loading, tokenization, and
parsing of source files, so should only be called once it is confirmed
that an error message needs to be printed.
There are some nice new error hints for explaining why a type is
required to be comptime, particularly for structs that contain function
body types.
`Type.requiresComptime` is now moved into Sema because it can fail and
might need to trigger field type resolution. Comptime pointer loading
takes into account types that do not have a well-defined memory layout
and does not try to compute a byte offset for them.
`fn()void` syntax no longer secretly makes a pointer. You get a function
body type, which requires comptime. However a pointer to a function body
can be runtime known (obviously).
Compile errors that report "expected pointer, found ..." are factored
out into convenience functions `checkPtrOperand` and `checkPtrType` and
have a note about function pointers.
Implemented `Value.hash` for functions, enum literals, and undefined values.
stage1 is not updated to this (yet?), so some workarounds and disabled
tests are needed to keep everything working. Should we update stage1 to
these new type semantics? Yes probably because I don't want to add too
much conditional compilation logic in the std lib for the different
backends.
Previously, optional slices returned the pointer size as abi size.
We now account for slices to calculate the correct size which is abi-alignment + slice ABI size.
When asking a struct or union whether the type requires comptime, it may
need to ask itself recursively, for example because of a field which is
a pointer to itself. This commit adds a field to each to keep track of
when computing the "requires comptime" value and returns `false` if the
check is already ongoing.
* AIR instruction vector_init gains the ability to init arrays and
tuples in addition to vectors. This will probably also gain the
ability to initialize structs and be renamed to `aggregate_init`.
* AstGen prefers to use an `anon_array_init` ZIR instruction for
local variables when the init expr is an array literal and there is
no type.
AIR:
* `array_elem_val` is now allowed to be used with a vector as the array
type.
* New instructions: splat, vector_init
AstGen:
* The splat ZIR instruction uses coerced_ty for the ResultLoc, avoiding
an unnecessary `as` instruction, since the coercion will be performed
in Sema.
* Builtins that accept vectors now ignore the type parameter. Comment
from this commit reproduced here:
The accepted proposal #6835 tells us to remove the type parameter from
these builtins. To stay source-compatible with stage1, we still observe
the parameter here, but we do not encode it into the ZIR. To implement
this proposal in stage2, only AstGen code will need to be changed.
Sema:
* `clz` and `ctz` ZIR instructions are now handled by the same function
which accept AIR tag and comptime eval function pointer to
differentiate.
* `@typeInfo` for vectors is implemented.
* `@splat` is implemented. It takes advantage of `Value.Tag.repeated` 😎
* `elemValue` is implemented for vectors, when the index is a scalar.
Handling a vector index is still TODO.
* Element-wise coercion is implemented for vectors. It could probably
be optimized a bit, but it is at least complete & correct.
* `Type.intInfo` supports vectors, returning int info for the element.
* `Value.ctz` initial implementation. Needs work.
* `Value.eql` is implemented for arrays and vectors.
LLVM backend:
* Implement vector support when lowering `array_elem_val`.
* Implement vector support when lowering `ctz` and `clz`.
* Implement `splat` and `vector_init`.
resolveTypeForCodegen is called when we needed to resolve a type fully,
even through pointer. This commit fully implements this, even through
pointer fields on structs and unions.
The function has now also been renamed to resolveTypeFully
This allows stage2 to build more of compiler-rt.
I also changed `-%` to `-` for comptime ints in the div and mul
implementations of compiler-rt. This is clearer code and also happens to
work around a bug in stage2.
This improves readability as well as compatibility with stage2. Most of
compiler-rt is now enabled for stage2 with just a few functions disabled
(until stage2 passes more behavior tests).
* `Module.Union.getLayout`: fixes to support components of the union
being 0 bits.
* Implement `@typeInfo` for unions.
* Add missing calls to `resolveTypeFields`.
* Fix explicitly-provided union tag types passing a `Zir.Inst.Ref`
where an `Air.Inst.Ref` was expected. We don't have any type safety
for this; these typess are aliases.
* Fix explicitly-provided `union(enum)` tag Values allocated to the
wrong arena.
Introduced a new AIR instruction: `tag_name`. Reasons to do this
instead of lowering it in Sema to a switch, function call, array
lookup, or if-else tower:
* Sema is a bottleneck; do less work in Sema whenever possible.
* If any optimization passes run, and the operand to becomes
comptime-known, then it could change to have a comptime result
value instead of lowering to a function or array or something which
would then have to be garbage-collected.
* Backends may want to choose to use a function and a switch branch,
or they may want to use a different strategy.
Codegen for `@tagName` is implemented for the LLVM backend but not any
others yet.
Introduced some new `Type` tags:
* `const_slice_u8_sentinel_0`
* `manyptr_const_u8_sentinel_0`
The motivation for this was to make typeof() on the tag_name AIR
instruction non-allocating.
A bunch more enum tests are passing now.
Layout algorithm: all `align(0)` fields are squished together as if they
were a single integer with a number of bits equal to `@bitSizeOf` each
field added together. Then the natural ABI alignment of that integer is
used for that pseudo-field.
Previously, this function would return an incorrect result for structs
and unions which did not have their fields resolved yet.
This required introducing more logic in Sema to resolve types before
doing certain things such as creating an anonmyous Decl and emitting
function call AIR.
As a result a couple more struct tests pass.
Oh, and I implemented the language change to make sizeOf for pointers
always return pointer size bytes even if the element type is 0 bits.
While this is technically incorrect, proper handling of anyopaque, as well
as regular opaque, is probably best left until pointers to zero-sized types
having no bits is abolished.
This allows the inferred error set of comptime and inline invocations to be
resolved separately from the inferred error set of the runtime version or other
comptime/inline invocations.
* stage1: change the `@typeName` of `@TypeOf(undefined)`,
`@TypeOf(null)`, and `@TypeOf(.foo)` to match stage2.
* move passing behavior tests to the passing-for-stage2 section.
* test_functions: properly add dependencies of the array on test
functions and test names so that the order comes out correctly.
* fix lowering of struct literals to add parentheses around the type
name.
* omit const qualifier in slices because otherwise slices cannot be
reassigned even when they are local variables.
* special case pointer to functions and double pointer to functions in
renderTypeAndName. This code will need to be cleaned up but for now
it helps us make progress on other C backend stuff.
* fix slice element access to lower to `.ptr[` instead of `[`.
* airSliceElemVal: respect volatile slices
* C pointer types always have allowzero set to true but they omit the
word allowzero when printed.
* Implement coercion from C pointers to other pointers.
* Implement in-memory coercion for slices and pointer-like optionals.
* Make slicing a C pointer drop the allowzero bit.
* Value representation for pointer-like optionals is now allowed to use
pointer tag values in addition to the `opt_payload` tag.
* AstGen: always use `typeof` and never `typeof_elem` on the
`switch_cond`/`switch_cond_ref` instruction because both variants
return a value and not a pointer.
- Delete the `typeof_elem` ZIR instruction since it is no longer
needed.
* Sema: validateUnionInit now recognizes a comptime mutable value and
no longer emits a compile error saying "cannot evaluate constant
expression"
- Still to-do is detecting comptime union values in a function that
is not being executed at compile-time.
- This is still to-do for structs too.
* Sema: when emitting a call AIR instruction, call resolveTypeLayout on
all the parameter types as well as the return type.
* `Type.structFieldOffset` now works for unions in addition to structs.
* Restructure elemPtr a bit
* New AIR instruction: slice_elem_ptr, which returns a pointer to an element of a slice
* Value: adapt elemPtr to work on slices