To my knowledge, the only platforms that actually *require* PIE are Fuchsia and
Android, and the latter *only* when building a dynamically-linked executable.
OpenBSD and macOS both strongly encourage using PIE by default, but it isn't
technically required. So for the latter platforms, we enable it by default but
don't enforce it.
Also, importantly, if we're building an object file or a static library, and the
user hasn't explicitly told us whether to build PIE or non-PIE code (and the
target doesn't require PIE), we should *not* default to PIE. Doing so produces
code that cannot be linked into non-PIE output. In other words, building an
object file or a static library as PIE is an optimization only to be done when
the user knows that it'll end up in a PIE executable in the end.
Closes#21837.
Textual PTX is just assembly language like any other. And if we do ever add
support for emitting PTX object files after reverse engineering the bytecode
format, we'd be emitting ELF files like the CUDA toolchain. So there's really no
need for a special ObjectFormat tag here, nor linker code that treats it as a
distinct format.
This is generally ill-advised, but can be useful in some niche situations where
the caveats don't apply. It might also be useful when providing a libc.txt that
points to Eyra.
* Accept -fsanitize-c=trap|full in addition to the existing form.
* Accept -f(no-)sanitize-trap=undefined in zig cc.
* Change type of std.Build.Module.sanitize_c to std.zig.SanitizeC.
* Add some missing Compilation.Config fields to the cache.
Closes#23216.
This moves the default value logic to Package.Module.create() instead and makes
it so that Compilation.Config.any_unwind_tables is computed similarly to
any_sanitize_thread, any_fuzz, etc. It turns out that for any_unwind_tables, we
only actually care if unwind tables are enabled at all, not at what level.
The goal here is to support both levels of unwind tables (sync and async) in
zig cc and zig build. Previously, the LLVM backend always used async tables
while zig cc was partially influenced by whatever was Clang's default.
See: https://devblogs.microsoft.com/directx/directx-adopting-spir-v
Since we never hooked up the (experimental) DirectX LLVM backend, we've never
actually supported targeting DXIL in Zig. With Microsoft moving away from DXIL,
that seems very unlikely to change.
* Add -f(no-)sanitize-coverage-trace-pc-guard CLI flag which defaults to
off. This value lowers to TracePCGuard = true (LLVM backend) and -Xclang
-fsanitize-coverage-trace-pc-guard. These settings are not
automatically included with -ffuzz.
* Add `Build.Step.Compile` flag for sanitize_coverage_trace_pc_guard
with appropriate documentation.
* Add `zig cc` integration for the respective flags.
* Avoid crashing in ELF linker code when -ffuzz -femit-llvm-ir used
together.
* Add the `-ffuzz` and `-fno-fuzz` CLI arguments.
* Detect fuzz testing flags from zig cc.
* Set the correct clang flags when fuzz testing is requested. It can be
combined with TSAN and UBSAN.
* Compilation: build fuzzer library when needed which is currently an
empty zig file.
* Add optforfuzzing to every function in the llvm backend for modules
that have requested fuzzing.
* In ZigLLVMTargetMachineEmitToFile, add the optimization passes for
sanitizer coverage.
* std.mem.eql uses a naive implementation optimized for fuzzing when
builtin.fuzz is true.
Tracked by #20702
This is necessary because on COFF, the entry symbol name is not known
until the linker has looked at the set of global symbol names to
determine which of the four possible main entry points is present.
use_llvm=false does not always mean there needs to be a zig compiler
backend available. In particular, when there is no zig compilation unit,
use_llvm=false and yet no zig backend will be used to produce code.
In Compilation.create, update the resolved config to account for the
default resolution of the root module. This makes it so that, for
example, reading comp.config.any_non_single_threaded is valid in order
to determine whether any module has single_threaded=false.
* fix relationship between createEmpty/open (similar logic as
607111aa758002bc51914b7dc800b23927c931b8)
* still resolve the start symbol when linking libc because when zig is
the linker it still needs to know the entry symbol.
* make use_llvm=false when there is no zig compilation unit.
when linking libc, the entry point is within libc.
when producing C code, the entry point is decided when compiling the C
code and does not need to be known up front.
fixes a false positive "error: unknown target entry point" when using
-ofmt=c.