Basically everything that has a direct replacement or no uses left.
Notable omissions:
- std.ArrayHashMap: Too much fallout, needs a separate cleanup.
- std.debug.runtime_safety: Too much fallout.
- std.heap.GeneralPurposeAllocator: Lots of references to it remain, not
a simple find and replace as "debug allocator" is not equivalent to
"general purpose allocator".
- std.io.Reader: Is being reworked at the moment.
- std.unicode.utf8Decode(): No replacement, needs a new API first.
- Manifest backwards compat options: Removal would break test data used
by TestFetchBuilder.
- panic handler needs to be a namespace: Many tests still rely on it
being a function, needs a separate cleanup.
Apparently raw LLVM IR Bitcode files ("Bitstreams") may appear in
archives with LTO enabled. I observed this in the wild on
Chimera Linux.
I'm not yet sure if it's in scope for Zig to support these special
archives, but we should at least give a correct error message.
Alignment and fill options only apply to numbers.
Rework the implementation to mainly branch on the format string rather
than the type information. This is more straightforward to maintain and
more straightforward for comptime evaluation.
Enums support being printed as decimal, hexadecimal, octal, and binary.
`formatInteger` is another possible format method that is
unconditionally called when the value type is struct and one of the
integer-printing format specifiers are used.
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
preparing to rearrange std.io namespace into an interface
how to upgrade:
std.io.getStdIn() -> std.fs.File.stdin()
std.io.getStdOut() -> std.fs.File.stdout()
std.io.getStdErr() -> std.fs.File.stderr()
This matches what we do for small helper libraries like this in MinGW-w64. It
simplifies the compiler a bit, and also means the build system doesn't have to
treat these library names specially.
Closes#24325.
This is not meant to be a long-term solution, but it's the easiest thing
to get working quickly at the moment. The main intention of this hack is
to allow more tests to be enabled. By the time the coff linker is far
enough along to be enabled by default, this will no longer be required.
Did you know that allocators reuse addresses? If not, then don't feel
bad, because apparently I don't either! This dumb mistake was probably
responsible for the CI failures on `master` yesterday.
I messed up atomic orderings on this variable because they changed in a
local refactor at some point. We need to always release on the store and
acquire on the loads so that a linker thread observing `.ready` sees the
stored MIR.
Without this cap, unlucky scheduling and/or details of what pipeline
stages perform best on the host machine could cause many gigabytes of
MIR to be stuck in the queue. At a certain point, pause the main thread
until some of the functions in flight have been processed.
* "Flush" nodes ("LLVM Emit Object", "ELF Flush") appear under "Linking"
* "Code Generation" disappears when all analysis and codegen is done
* We only show one node under "Semantic Analysis" to accurately convey
that analysis isn't happening in parallel, but rather that we're
pausing one task to do another
Previously, various doc comments heavily disagreed with the
implementation on both what lives where on the filesystem at what time,
and how that was represented in code. Notably, the combination of emit
paths outside the cache and `disable_lld_caching` created a kind of
ad-hoc "cache disable" mechanism -- which didn't actually *work* very
well, 'most everything still ended up in this cache. There was also a
long-standing issue where building using the LLVM backend would put a
random object file in your cwd.
This commit reworks how emit paths are specified in
`Compilation.CreateOptions`, how they are represented internally, and
how the cache usage is specified.
There are now 3 options for `Compilation.CacheMode`:
* `.none`: do not use the cache. The paths we have to emit to are
relative to the compiler cwd (they're either user-specified, or
defaults inferred from the root name). If we create any temporary
files (e.g. the ZCU object when using the LLVM backend) they are
emitted to a directory in `local_cache/tmp/`, which is deleted once
the update finishes.
* `.whole`: cache the compilation based on all inputs, including file
contents. All emit paths are computed by the compiler (and will be
stored as relative to the local cache directory); it is a CLI error to
specify an explicit emit path. Artifacts (including temporary files)
are written to a directory under `local_cache/tmp/`, which is later
renamed to an appropriate `local_cache/o/`. The caller (who is using
`--listen`; e.g. the build system) learns the name of this directory,
and can get the artifacts from it.
* `.incremental`: similar to `.whole`, but Zig source file contents, and
anything else which incremental compilation can handle changes for, is
not included in the cache manifest. We don't need to do the dance
where the output directory is initially in `tmp/`, because our digest
is computed entirely from CLI inputs.
To be clear, the difference between `CacheMode.whole` and
`CacheMode.incremental` is unchanged. `CacheMode.none` is new
(previously it was sort of poorly imitated with `CacheMode.whole`). The
defined behavior for temporary/intermediate files is new.
`.none` is used for direct CLI invocations like `zig build-exe foo.zig`.
The other cache modes are reserved for `--listen`, and the cache mode in
use is currently just based on the presence of the `-fincremental` flag.
There are two cases in which `CacheMode.whole` is used despite there
being no `--listen` flag: `zig test` and `zig run`. Unless an explicit
`-femit-bin=xxx` argument is passed on the CLI, these subcommands will
use `CacheMode.whole`, so that they can put the output somewhere without
polluting the cwd (plus, caching is potentially more useful for direct
usage of these subcommands).
Users of `--listen` (such as the build system) can now use
`std.zig.EmitArtifact.cacheName` to find out what an output will be
named. This avoids having to synchronize logic between the compiler and
all users of `--listen`.
It turns out that LLD caching hasn't been in use for a while. On master,
it is currently only enabled when you compile via the build system,
passing `-fincremental`, using LLD (and so LLVM if there's a ZCU). That
case never happens, because `-fincremental` is only useful when you're
using a backend *other* than the LLVM backend. My previous commits
accidentally re-enabled this logic in some cases, exposing bugs; that
ultimately led to this realisation. So, let's just delete that logic --
less LLVM-related cruft to maintain.
Unfortunately, the self-hosted SPIR-V backend is quite tightly coupled
with the self-hosted SPIR-V linker through its `Object` concept (which
is much like `llvm.Object`). Reworking this would be too much work for
this branch. So, for now, I have introduced a special case (similar to
the LLVM backend's special case) to the codegen logic when using this
backend. We will want to delete this special case at some point, but it
need not block this work.
My original goal here was just to get the self-hosted Wasm backend
compiling again after the pipeline change, but it turned out that from
there it was pretty simple to entirely eliminate the shared state
between `codegen.wasm` and `link.Wasm`. As such, this commit not only
fixes the backend, but makes it the second backend (after CBE) to
support the new 1:N:1 threading model.
As of this commit, every backend other than self-hosted Wasm and
self-hosted SPIR-V compiles and (at least somewhat) functions again.
Those two backends are currently disabled with panics.
Note that `Zcu.Feature.separate_thread` is *not* enabled for the fixed
backends. Avoiding linker references from codegen is a non-trivial task,
and can be done after this branch.
The idea here is that instead of the linker calling into codegen,
instead codegen should run before we touch the linker, and after MIR is
produced, it is sent to the linker. Aside from simplifying the call
graph (by preventing N linkers from each calling into M codegen
backends!), this has the huge benefit that it is possible to
parallellize codegen separately from linking. The threading model can
look like this:
* 1 semantic analysis thread, which generates AIR
* N codegen threads, which process AIR into MIR
* 1 linker thread, which emits MIR to the binary
The codegen threads are also responsible for `Air.Legalize` and
`Air.Liveness`; it's more efficient to do this work here instead of
blocking the main thread for this trivially parallel task.
I have repurposed the `Zcu.Feature.separate_thread` backend feature to
indicate support for this 1:N:1 threading pattern. This commit makes the
C backend support this feature, since it was relatively easy to divorce
from `link.C`: it just required eliminating some shared buffers. Other
backends don't currently support this feature. In fact, they don't even
compile -- the next few commits will fix them back up.