This also makes a long-overdue change of extracting common state from
Build into a shared Graph object.
Getting the semantics right for these flags turned out to be quite
tricky. In the end it works like this:
* The override only happens when the target is fully native, with no
additional query parameters, such as versions or CPU features added.
* The override affects the resolved Target but leaves the original Query
unmodified.
* The "is native?" detection logic operates on the original, unmodified
query. This makes it possible to provide invalid host target
information, causing confusing errors to occur. Don't do that.
There are some minor breaking changes to std.Build API such as the fact
that `b.zig_exe` is now moved to `b.graph.zig_exe`, as well as a handful
of other similar flags.
This change is seemingly insignificant but I actually agonized over this
for three days. Some other things I considered:
* (status quo in master branch) make Compile step creation functions
accept a Target.Query and delete the ResolvedTarget struct.
- downside: redundantly resolve target queries many times
* same as before but additionally add a hash map to cache target query
resolutions.
- downside: now there is a hash map that doesn't actually need to
exist, just to make the API more ergonomic.
* add is_native_os and is_native_abi fields to std.Target and use it
directly as the result of resolving a target query.
- downside: they really don't belong there. They would be available
as comptime booleans via `@import("builtin")` but they should not
be exposed that way.
With this change the downsides are:
* the option name of addExecutable and friends is `target` instead of
`resolved_target` matching the type name.
- upside: this does not break compatibility with existing build
scripts
* you likely end up seeing `target.result.cpu.arch` rather than
`target.cpu.arch`.
- upside: this is an improvement over `target.target.cpu.arch` which
it was before this commit.
- downside: `b.host.target` is now `b.host.result`.
Introduce the concept of "target query" and "resolved target". A target
query is what the user specifies, with some things left to default. A
resolved target has the default things discovered and populated.
In the future, std.zig.CrossTarget will be rename to std.Target.Query.
Introduces `std.Build.resolveTargetQuery` to get from one to the other.
The concept of `main_mod_path` is gone, no longer supported. You have to
put the root source file at the module root now.
* remove deprecated API
* update build.zig for the breaking API changes in this branch
* move std.Build.Step.Compile.BuildId to std.zig.BuildId
* add more options to std.Build.ExecutableOptions, std.Build.ObjectOptions,
std.Build.SharedLibraryOptions, std.Build.StaticLibraryOptions, and
std.Build.TestOptions.
* remove `std.Build.constructCMacro`. There is no use for this API.
* deprecate `std.Build.Step.Compile.defineCMacro`. Instead,
`std.Build.Module.addCMacro` is provided.
- remove `std.Build.Step.Compile.defineCMacroRaw`.
* deprecate `std.Build.Step.Compile.linkFrameworkNeeded`
- use `std.Build.Module.linkFramework`
* deprecate `std.Build.Step.Compile.linkFrameworkWeak`
- use `std.Build.Module.linkFramework`
* move more logic into `std.Build.Module`
* allow `target` and `optimize` to be `null` when creating a Module.
Along with other fields, those unspecified options will be inherited
from parent `Module` when inserted into an import table.
* the `target` field of `addExecutable` is now required. pass `b.host`
to get the host target.
Until now, we would pass `candidate: NativeTargetInfo` which creates
a copy of the `NativeTargetInfo.DynamicLinker` buffer. We would then
return this buffer in `bad_dl: []const u8` which would goes out-of-scope
the moment we leave this function frame yielding garbage. To fix this,
we just need to remember to pass by const-pointer
`candidate: *const NativeTargetInfo`.
* introduce LazyPath.cwd_relative variant and use it for --zig-lib-dir. closes#12685
* move overrideZigLibDir and setMainPkgPath to options fields set once
and then never mutated.
* avoid introducing Build/util.zig
* use doc comments for deprecation notices so that they show up in
generated documentation.
* introduce InstallArtifact.Options, accept it as a parameter to
addInstallArtifact, and move override_dest_dir into it. Instead of
configuring the installation via Compile step, configure the
installation via the InstallArtifact step. In retrospect this is
obvious.
* remove calls to pushInstalledFile in InstallArtifact. See #14943
* rewrite InstallArtifact to not incorrectly observe whether a Compile
step has any generated outputs. InstallArtifact is meant to trigger
output generation.
* fix child process evaluation code handling of `-fno-emit-bin`.
* don't store out_h_filename, out_ll_filename, etc., pointlessly. these
are all just simple extensions appended to the root name.
* make emit_directory optional. It's possible to have nothing outputted,
for example, if you're just type-checking.
* avoid passing -femit-foo/-fno-emit-foo when it is the default
* rename ConfigHeader.getTemplate to getOutput
* deprecate addOptionArtifact
* update the random number seed of Options step caching.
* avoid using `inline for` pointlessly
* avoid using `override_Dest_dir` pointlessly
* avoid emitting an executable pointlessly in test cases
Removes forceBuild and forceEmit. Let's consider these additions separately.
Nearly all of the usage sites were suspicious.
Specifically this is to make sure llvm data layout generation doesn't
regress. The no emit bin is to allow testing targets that can't
currently be linked. The commented out targets are ones that fail in
the linker anyway when no emit bin is passed.
The runCases function incorrectly called the introspect.findZigLibDir
function, causing a possible error, depending on the location of the
local cache directory, since the current executable is check-case.
Use findZigLibDirFromSelfExe, passing the zig_exe_path argument.
The current CI scripts work correctly because ZIG_LOCAL_CACHE_DIR is set
to "$(pwd)/zig-local-cache".
Fixes#15044
These were failing on the prior commit. Unfortunately, the fix would
have been relatively complicated, and ties into underlying issues with
the current incremental compilation logic. After discussing this with
Andrew, we agreed that the best course of action is to completely
disable incremental compilation tests for now until it's more mature, at
which point we can re-enable them.
Also get rid of the TTY wrapper struct, which was exlusively used as a
namespace - this is done by the tty.zig root struct now.
detectTTYConfig has been renamed to just detectConfig, which is enough
given the new namespace. Additionally, a doc comment had been added.
These functions are problematic in light of dependencies because they
run and install, respectively, for the *owner* package rather than for
the *user* package. By removing these functions, the build script is
forced to provide the *Build object to associate the new step with,
making everything less surprising.
Unfortunately, this is a widely breaking change.
see #15079
std.Build.addTest creates a CompileStep as before, however, this kind of
step no longer actually runs the unit tests. Instead it only compiles
it, and one must additionally create a RunStep from the CompileStep in
order to actually run the tests.
RunStep gains integration with the default test runner, which now
supports the standard --listen=- argument in order to communicate over
stdin and stdout. It also reports test statistics; how many passed,
failed, and leaked, as well as directly associating the relevant stderr
with the particular test name that failed.
This separation of CompileStep and RunStep means that
`CompileStep.Kind.test_exe` is no longer needed, and therefore has been
removed in this commit.
* build runner: show unit test statistics in build summary
* added Step.writeManifest since many steps want to treat it as a
warning and emit the same message if it fails.
* RunStep: fixed error message that prints the failed command printing
the original argv and not the adjusted argv in case an interpreter
was used.
* RunStep: fixed not passing the command line arguments to the
interpreter.
* move src/Server.zig to std.zig.Server so that the default test runner
can use it.
* the simpler test runner function which is used by work-in-progress
backends now no longer prints to stderr, which is necessary in order
for the build runner to not print the stderr as a warning message.
Instead of using `zig test` to build a special version of the compiler
that runs all the test-cases, the zig build system is now used as much
as possible - all with the basic steps found in the standard library.
For incremental compilation tests (the ones that look like foo.0.zig,
foo.1.zig, foo.2.zig, etc.), a special version of the compiler is
compiled into a utility executable called "check-case" which checks
exactly one sequence of incremental updates in an independent
subprocess. Previously, all incremental and non-incremental test cases
were done in the same test runner process.
The compile error checking code is now simpler, but also a bit
rudimentary, and so it additionally makes sure that the actual compile
errors do not include *extra* messages, and it makes sure that the
actual compile errors output in the same order as expected. It is also
based on the "ends-with" property of each line rather than the previous
logic, which frankly I didn't want to touch with a ten-meter pole. The
compile error test cases have been updated to pass in light of these
differences.
Previously, 'error' mode with 0 compile errors was used to shoehorn in a
different kind of test-case - one that only checks if a piece of code
compiles without errors. Now there is a 'compile' mode of test-cases,
and 'error' must be only used when there are greater than 0 errors.
link test cases are updated to omit the target object format argument
when calling checkObject since that is no longer needed.
The test/stage2 directory is removed; the 2 files within are moved to be
directly in the test/ directory.