I'm so sorry.
This commit was just meant to be making all types fully resolve by
queueing resolution at the moment of their creation. Unfortunately, a
lot of dominoes ended up falling. Here's what happened:
* I added a work queue job to fully resolve a type.
* I realised that from here we could eliminate `Sema.types_to_resolve`
if we made function codegen a separate job. This is desirable for
simplicity of both spec and implementation.
* This led to a new AIR traversal to detect whether any required type is
unresolved. If a type in the AIR failed to resolve, then we can't run
codegen.
* Because full type resolution now occurs by the work queue job, a bug
was exposed whereby error messages for type resolution were associated
with the wrong `Decl`, resulting in duplicate error messages when the
type was also resolved "by" its owner `Decl` (which really *all*
resolution should be done on).
* A correct fix for this requires using a different `Sema` when
performing type resolution: we need a `Sema` owned by the type. Also
note that this fix is necessary for incremental compilation.
* This means a whole bunch of functions no longer need to take `Sema`s.
* First-order effects: `resolveTypeFields`, `resolveTypeLayout`, etc
* Second-order effects: `Type.abiAlignmentAdvanced`, `Value.orderAgainstZeroAdvanced`, etc
The end result of this is, in short, a more correct compiler and a
simpler language specification. This regressed a few error notes in the
test cases, but nothing that seems worth blocking this change.
Oh, also, I ripped out the old code in `test/src/Cases.zig` which
introduced a dependency on `Compilation`. This dependency was
problematic at best, and this code has been unused for a while. When we
re-enable incremental test cases, we must rewrite their executor to use
the compiler server protocol.
This patch is a pure rename plus only changing the file path in
`@import` sites, so it is expected to not create version control
conflicts, even when rebasing.
This reverts commit a7de02e05216db9a04e438703ddf1b6b12f3fbef.
This did not implement the accepted proposal, and I did not sign off
on the changes. I would like a chance to review this, please.
This was a "fake" type used to handle C varargs parameters, much like
generic poison. In fact, it is treated identically to generic poison in
all cases other than one (the final coercion of a call argument), which
is trivially special-cased. Thus, it makes sense to remove this special
tag and instead use `generic_poison_type` in its place. This fixes
several bugs in Sema related to missing handling of this tag.
Resolves: #19781
This commit changes how we represent comptime-mutable memory
(`comptime var`) in the compiler in order to implement the intended
behavior that references to such memory can only exist at comptime.
It does *not* clean up the representation of mutable values, improve the
representation of comptime-known pointers, or fix the many bugs in the
comptime pointer access code. These will be future enhancements.
Comptime memory lives for the duration of a single Sema, and is not
permitted to escape that one analysis, either by becoming runtime-known
or by becoming comptime-known to other analyses. These restrictions mean
that we can represent comptime allocations not via Decl, but with state
local to Sema - specifically, the new `Sema.comptime_allocs` field. All
comptime-mutable allocations, as well as any comptime-known const allocs
containing references to such memory, live in here. This allows for
relatively fast checking of whether a value references any
comptime-mtuable memory, since we need only traverse values up to
pointers: pointers to Decls can never reference comptime-mutable memory,
and pointers into `Sema.comptime_allocs` always do.
This change exposed some faulty pointer access logic in `Value.zig`.
I've fixed the important cases, but there are some TODOs I've put in
which are definitely possible to hit with sufficiently esoteric code. I
plan to resolve these by auditing all direct accesses to pointers (most
of them ought to use Sema to perform the pointer access!), but for now
this is sufficient for all realistic code and to get tests passing.
This change eliminates `Zcu.tmp_hack_arena`, instead using the Sema
arena for comptime memory mutations, which is possible since comptime
memory is now local to the current Sema.
This change should allow `Decl` to store only an `InternPool.Index`
rather than a full-blown `ty: Type, val: Value`. This commit does not
perform this refactor.
* Introduce `-Ddebug-extensions` for enabling compiler debug helpers
* Replace safety mode checks with `std.debug.runtime_safety`
* Replace debugger helper checks with `!builtin.strip_debug_info`
Sometimes, you just have to debug optimized compilers...
This commit eliminates the `dbg_block_{begin,end}` instructions from
both ZIR and AIR. Instead, lexical scoping of `dbg_var_{ptr,val}`
instructions is decided based on the AIR block they exist within. This
is a much more robust system, and also results in a huge drop in ZIR
bytes - around 7% for Sema.zig.
This required some enhancements to Sema to prevent elision of blocks
when they are required for debug variable scoping. This can be observed
by looking at the AIR for the following simple test program with and
without `-fstrip`:
```zig
export fn f() void {
{
var a: u32 = 0;
_ = &a;
}
{
var a: u32 = 0;
_ = &a;
}
}
```
When `-fstrip` is passed, no AIR blocks are generated. When `-fno-strip`
is passed, the ZIR blocks are lowered to true AIR blocks to give correct
lexical scoping to the debug vars.
The changes here incidentally reolve #19060. A corresponding behavior
test has been added.
Resolves: #19060
AstGen provides all function call arguments with a result location,
referenced through the call instruction index. The idea is that this
should be the parameter type, but for `anytype` parameters, we use
generic poison, which is required to be handled correctly.
Previously, generic instantiations and inline calls worked by evaluating
all args in advance, before resolving generic parameter types. This
means any generic parameter (not just `anytype` ones) had generic poison
result types. This caused missing result locations in some cases.
Additionally, the generic instantiation logic caused `zirParam` to
analyze the argument types a second time before coercion. This meant
that for nominal types (struct/enum/etc), a *new* type was created,
distinct to the result type which was previously forwarded to the
argument expression.
This commit fixes both of these issues. Generic parameter type
resolution is now interleaved with argument analysis, so that we don't
have unnecessary generic poison types, and generic instantiation logic
now handles parameters itself rather than falling through to the
standard zirParam logic, so avoids duplicating the types.
Resolves: #16566Resolves: #16258Resolves: #16753
Previously, they shared function index with the owner decl, but that
would clobber the data stored for inferred error sets of runtime calls.
Now there is an adhoc_inferred_error_set_type which models the problem
much more correctly.
Abridged summary:
* Move `Module.Fn` into `InternPool`.
* Delete a lot of confusing and problematic `Sema` logic related to
generic function calls.
This commit removes `Module.Fn` and replaces it with two new
`InternPool.Tag` values:
* `func_decl` - corresponding to a function declared in the source
code. This one contains line/column numbers, zir_body_inst, etc.
* `func_instance` - one for each monomorphization of a generic
function. Contains a reference to the `func_decl` from whence the
instantiation came, along with the `comptime` parameter values (or
types in the case of `anytype`)
Since `InternPool` provides deduplication on these values, these fields
are now deleted from `Module`:
* `monomorphed_func_keys`
* `monomorphed_funcs`
* `align_stack_fns`
Instead of these, Sema logic for generic function instantiation now
unconditionally evaluates the function prototype expression for every
generic callsite. This is technically required in order for type
coercions to work. The previous code had some dubious, probably wrong
hacks to make things work, such as `hashUncoerced`. I'm not 100% sure
how we were able to eliminate that function and still pass all the
behavior tests, but I'm pretty sure things were still broken without
doing type coercion for every generic function call argument.
After the function prototype is evaluated, it produces a deduplicated
`func_instance` `InternPool.Index` which can then be used for the
generic function call.
Some other nice things made by this simplification are the removal of
`comptime_args_fn_inst` and `preallocated_new_func` from `Sema`, and the
messy logic associated with them.
I have not yet been able to measure the perf of this against master
branch. On one hand, it reduces memory usage and pointer chasing of the
most heavily used `InternPool` Tag - function bodies - but on the other
hand, it does evaluate function prototype expressions more than before.
We will soon find out.
Previously, interned values were represented as AIR instructions using
the `interned` tag. Now, the AIR ref directly encodes the InternPool
index. The encoding works as follows:
* If the ref matches one of the static values, it corresponds to the same InternPool index.
* Otherwise, if the MSB is 0, the ref corresponds to an InternPool index.
* Otherwise, if the MSB is 1, the ref corresponds to an AIR instruction index (after removing the MSB).
Note that since most static InternPool indices are low values (the
exceptions being `.none` and `.var_args_param_type`), the first rule is
almost a nop.
This actually used to be how it worked in stage1, and there was this
issue to change it: #2649
So this commit is a reversal to that idea. One motivation for that issue
was avoiding emitting the panic handler in compilations that do not have
any calls to panic. This commit only resolves the panic handler in the
event of a safety check function being emitted, so it does not have that
flaw.
The other reason given in that issue was for optimizations that elide
safety checks. It's yet to be determined whether that was a good idea or
not; this can get re-explored when we start adding optimization passes
to AIR.
This commit adds these AIR instructions, which are only emitted if
`backendSupportsFeature(.safety_checked_arithmetic)` is true:
* add_safe
* sub_safe
* mul_safe
It removes these nonsensical AIR instructions:
* addwrap_optimized
* subwrap_optimized
* mulwrap_optimized
The safety-checked arithmetic functions push the burden of invoking the
panic handler into the backend. This makes for a messier compiler
implementation, but it reduces the amount of AIR instructions emitted by
Sema, which reduces time spent in the secondary bottleneck of the
compiler. It also generates more compact LLVM IR, reducing time spent in
the primary bottleneck of the compiler.
Finally, it eliminates 1 stack allocation per safety-check which was
being used to store the resulting tuple. These allocations were going to
be annoying when combined with suspension points.
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:
* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
The Zig language allows the compiler to make this optimization
automatically. We should definitely make the compiler do that, and
revert this commit. However, that will not happen in this branch, and I
want to continue to explore achieving performance parity with
merge-base. So, this commit changes all InternPool parameters to be
passed by const pointer rather than by value.
I measured a 1.03x ± 0.03 speedup vs the previous commit compiling the
(set of passing) behavior tests. Against merge-base, this commit is
1.17x ± 0.04 slower, which is an improvement from the previous
measurement of 1.22x ± 0.02.
Related issue: #13510
Related issue: #14129
Related issue: #15688
Previously, there were types and values for inferred allocations and a
lot of special-case handling. Now, instead, the special casing is
limited to AIR instructions for these use cases.
Instead of storing data in Value payloads, the data is now stored in AIR
instruction data as well as the previously `void` value type of the
`unresolved_inferred_allocs` hash map.
One change worth noting in this commit is that `module.global_error_set`
is no longer kept strictly up-to-date. The previous code reserved
integer error values when dealing with error set types, but this is no
longer needed because the integer values are not needed for semantic
analysis unless `@errorToInt` or `@intToError` are used and therefore
may be assigned lazily.
I'm seeing a new assertion trip: the call to `enumTagFieldIndex` in the
implementation of `@Type` is attempting to query the field index of an
union's enum tag, but the type of the enum tag value provided is not the
same as the union's tag type. Most likely this is a problem with type
coercion, since values are now typed.
Another problem is that I added some hacks in std.builtin because I
didn't see any convenient way to access them from Sema. That should
definitely be cleaned up before merging this branch.