Apple's own headers and tbd files prefer to think of Mac Catalyst as a distinct
OS target. Earlier, when DriverKit support was added to LLVM, it was represented
a distinct OS. So why Apple decided to only represent Mac Catalyst as an ABI in
the target triple is beyond me. But this isn't the first time they've ignored
established target triple norms (see: armv7k and aarch64_32) and it probably
won't be the last.
While doing this, I also audited all Darwin OS prongs throughout the codebase
and made sure they cover all the tags.
There is approximately zero chance of the Zig team ever spending any effort on
supporting Cygwin; the MSVC and MinGW-w64 ABIs are superior in every way that
matters, and not least because they lead to binaries that just run natively on
Windows without needing a POSIX emulation environment installed.
As with Solaris (dba1bf935390ddb0184a4dc72245454de6c06fd2), we have no way to
actually audit contributions for these OSs. IBM also makes it even harder than
Oracle to actually obtain these OSs.
closes#23695closes#23694closes#3655closes#23693
There is no straightforward way for the Zig team to access the Solaris system
headers; to do this, one has to create an Oracle account, accept their EULA to
download the installer ISO, and finally install it on a machine or VM. We do not
have to jump through hoops like this for any other OS that we support, and no
one on the team has expressed willingness to do it.
As a result, we cannot audit any Solaris contributions to std.c or other
similarly sensitive parts of the standard library. The best we would be able to
do is assume that Solaris and illumos are 100% compatible with no way to verify
that assumption. But at that point, the solaris and illumos OS tags would be
functionally identical anyway.
For Solaris especially, any contributions that involve APIs introduced after the
OS was made closed-source would also be inherently more risky than equivalent
contributions for other proprietary OSs due to the case of Google LLC v. Oracle
America, Inc., wherein Oracle clearly demonstrated its willingness to pursue
legal action against entities that merely copy API declarations.
Finally, Oracle laid off most of the Solaris team in 2017; the OS has been in
maintenance mode since, presumably to be retired completely sometime in the 2030s.
For these reasons, this commit removes all Oracle Solaris support.
Anyone who still wishes to use Zig on Solaris can try their luck by simply using
illumos instead of solaris in target triples - chances are it'll work. But there
will be no effort from the Zig team to support this use case; we recommend that
people move to illumos instead.
This allows us to rule out support for certain address spaces based on the OS.
This commit is just a refactor, however, and doesn't actually make use of that
opportunity yet.
* ELF v1 on powerpc64 is only barely kept on life support in a couple of Linux
distros. I don't anticipate that this will last much longer.
* Most of the Linux world has moved to powerpc64le which requires ELF v2.
* Some Linux distros have even started supporting powerpc64 with ELF v2.
* The BSD world has long since moved to ELF v2.
* We have no actual linking support for ELF v1.
* ELF v1 had confused DWARF register mappings which is becoming a problem in
our DWARF code in std.debug.
It's clear that ELF v1 is on its way out, and we never fully supported it
anyway. So let's not waste any time or energy on it going forward.
closes#5927
* Remove the generic model; we already have generic_la32 and generic_la64 and
pick appropriately based on bitness.
* Remove the loongarch64 model. We used this as our baseline for 64-bit, but it's
actually pretty misleading and useless; it doesn't represent any real CPU and
has less features than generic_la64.
* Add la64v1_0 and la64v1_1 models.
* Change our baseline CPU model for 64-bit to be la64v1_0, thus adding LSX to
the baseline feature set.