When filling the last (len % 4) bytes of a buffer, the random number n was only being shifted right by 4 bits for each byte instead of 8. A random u16, for example, would always have its middle two nybbles be equal when generated this way. For comparison, Isaac64.zig, Sfc64.zig, and Xoroshiro128.zig all correctly shift right by 8 bits for each of the last bytes in their nearly identical fill functions.
std.crypto.random
* cross platform, even freestanding
* can't fail. on initialization for some systems requires calling
os.getrandom(), in which case there are rare but theoretically
possible errors. The code panics in these cases, however the
application may choose to override the default seed function and then
handle the failure another way.
* thread-safe
* supports the full Random interface
* cryptographically secure
* no syscall required to initialize on Linux (AT_RANDOM)
* calls arc4random on systems that support it
`std.crypto.randomBytes` is removed in favor of `std.crypto.random.bytes`.
I moved some of the Random implementations into their own files in the
interest of organization.
stage2 no longer requires passing a RNG; instead it uses this API.
Closes#6704
Ziggurat rng was using deprecated `random.scalar(u64)` which was causing compile errors on calls to public facing stdlib APIs (randExp) on 0.6+, this fixed those errors.