The changes to `codegen.c` are blatant hacks, but the problem they work
around isn't a regression: it's an existing miscompilation. This branch
happened to *expose* that miscompilation in more cases by changing how
an incorrect result is *used*.
This was done by regex substitution with `sed`. I then manually went
over the entire diff and fixed any incorrect changes.
This diff also changes a lot of `callconv(.C)` to `callconv(.c)`, since
my regex happened to also trigger here. I opted to leave these changes
in, since they *are* a correct migration, even if they're not the one I
was trying to do!
This commit reworks how anonymous struct literals and tuples work.
Previously, an untyped anonymous struct literal
(e.g. `const x = .{ .a = 123 }`) was given an "anonymous struct type",
which is a special kind of struct which coerces using structural
equivalence. This mechanism was a holdover from before we used
RLS / result types as the primary mechanism of type inference. This
commit changes the language so that the type assigned here is a "normal"
struct type. It uses a form of equivalence based on the AST node and the
type's structure, much like a reified (`@Type`) type.
Additionally, tuples have been simplified. The distinction between
"simple" and "complex" tuple types is eliminated. All tuples, even those
explicitly declared using `struct { ... }` syntax, use structural
equivalence, and do not undergo staged type resolution. Tuples are very
restricted: they cannot have non-`auto` layouts, cannot have aligned
fields, and cannot have default values with the exception of `comptime`
fields. Tuples currently do not have optimized layout, but this can be
changed in the future.
This change simplifies the language, and fixes some problematic
coercions through pointers which led to unintuitive behavior.
Resolves: #16865
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.
This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
* Rename isPPC() -> isPowerPC32().
* Rename isPPC64() -> isPowerPC64().
* Add new isPowerPC() function which covers both.
There was confusion even in the standard library about what isPPC() meant. This
change makes these functions work how I think most people actually expect them
to work, and makes them consistent with isMIPS(), isSPARC(), etc.
I chose to rename from PPC to PowerPC because 1) it's more consistent with the
other functions, and 2) it'll cause loud rather than silent breakage for anyone
who might have been depending on isPPC() while misunderstanding it.
with this rewrite we can call functions inside of
inline assembly, enabling us to use the default start.zig logic
all that's left is to implement lr/sc loops for atomically manipulating
1 and 2 byte values, after which we can use the segfault handler logic.
I was doing duplicate work with `elemOffset` multiplying by the abi size and then the `ptr_add` `genBinOp` also multiplying.
This led to having writes happening in the wrong place.
Reorganize how the binOp and genBinOp functions work.
I've spent quite a while here reading exactly through the spec and so many
tests are enabled because of several critical issues the old design had.
There are some regressions that will take a long time to figure out individually
so I will ignore them for now, and pray they get fixed by themselves. When
we're closer to 100% passing is when I will start diving into them one-by-one.
what was happening is that instructions like `lb` were only affecting the lower bytes of the register and leaving the top dirty. this would lead to situtations were `cmp_eq` for example was using `xor`, which was failing because of the left-over stuff in the top of the register.
with this commit, we now zero out or truncate depending on the context, to ensure instructions like xor will provide proper results.
- implements `airSlice`, `airBitAnd`, `airBitOr`, `airShr`.
- got a basic design going for the `airErrorName` but for some reason it simply returns
empty bytes. will investigate further.
- only generating `.got.zig` entries when not compiling an object or shared library
- reduced the total amount of ops a mnemonic can have to 3, simplifying the logic
Besides the Intel OpenCL CPU runtime, we can now run the
behavior tests using the Portable Computing Language. This
implementation is open-source, so it will be easier for us
to patch in updated versions of spirv-llvm-translator that
have bug fixes etc.