Our usage of `ucontext_t` in the standard library was kind of
problematic. We unnecessarily mimiced libc-specific structures, and our
`getcontext` implementation was overkill for our use case of stack
tracing.
This commit introduces a new namespace, `std.debug.cpu_context`, which
contains "context" types for various architectures (currently x86,
x86_64, ARM, and AARCH64) containing the general-purpose CPU registers;
the ones needed in practice for stack unwinding. Each implementation has
a function `current` which populates the structure using inline
assembly. The structure is user-overrideable, though that should only be
necessary if the standard library does not have an implementation for
the *architecture*: that is to say, none of this is OS-dependent.
Of course, in POSIX signal handlers, we get a `ucontext_t` from the
kernel. The function `std.debug.cpu_context.fromPosixSignalContext`
converts this to a `std.debug.cpu_context.Native` with a big ol' target
switch.
This functionality is not exposed from `std.c` or `std.posix`, and
neither are `ucontext_t`, `mcontext_t`, or `getcontext`. The rationale
is that these types and functions do not conform to a specific ABI, and
in fact tend to get updated over time based on CPU features and
extensions; in addition, different libcs use different structures which
are "partially compatible" with the kernel structure. Overall, it's a
mess, but all we need is the kernel context, so we can just define a
kernel-compatible structure as long as we don't claim C compatibility by
putting it in `std.c` or `std.posix`.
This change resulted in a few nice `std.debug` simplifications, but
nothing too noteworthy. However, the main benefit of this change is that
DWARF unwinding---sometimes necessary for collecting stack traces
reliably---now requires far less target-specific integration.
Also fix a bug I noticed in `PageAllocator` (I found this due to a bug
in my distro's QEMU distribution; thanks, broken QEMU patch!) and I
think a couple of minor bugs in `std.debug`.
Resolves: #23801Resolves: #23802
This one changes the size of an allocation, allowing it to be relocated.
However, the implementation will still return `null` if it would be
equivalent to
new = alloc
memcpy(new, old)
free(old)
Mainly this prepares for taking advantage of `mremap` which I thought
would be a bigger deal but apparently is only available on Linux. Still,
we should use it on Linux.
This allocator now supports alignments greater than page size, with the
same implementation as it used before.
This is a partial revert of ceb0a632cfd6a4eada6bd27bf6a3754e95dcac86.
It looks like VirtualAlloc2 has better solutions to this problem,
including features such as MEM_RESERVE_PLACEHOLDER and MEM_LARGE_PAGES.
This possibility can be investigated as a follow-up task.
* fix merge conflicts
* rename the declarations
* reword documentation
* extract FixedBufferAllocator to separate file
* take advantage of locals
* remove the assertion about max alignment in Allocator API, leaving it
Allocator implementation defined
* fix non-inline function call in start logic
The GeneralPurposeAllocator implementation is totally broken because it
uses global state but I didn't address that in this commit.
heap.zig: define new default page sizes
heap.zig: add min/max_page_size and their options
lib/std/c: add miscellaneous declarations
heap.zig: add pageSize() and its options
switch to new page sizes, especially in GPA/stdlib
mem.zig: remove page_size
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:
* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
Anecdote 1: The generic version is way more popular than the non-generic
one in Zig codebase:
git grep -w alignForward | wc -l
56
git grep -w alignForwardGeneric | wc -l
149
git grep -w alignBackward | wc -l
6
git grep -w alignBackwardGeneric | wc -l
15
Anecdote 2: In my project (turbonss) that does much arithmetic and
alignment I exclusively use the Generic functions.
Anecdote 3: we used only the Generic versions in the Macho Man's linker
workshop.