Functions like isMinGW() and isGnuLibC() have a good reason to exist: They look
at multiple components of the target. But functions like isWasm(), isDarwin(),
isGnu(), etc only exist to save 4-8 characters. I don't think this is a good
enough reason to keep them, especially given that:
* It's not immediately obvious to a reader whether target.isDarwin() means the
same thing as target.os.tag.isDarwin() precisely because isMinGW() and similar
functions *do* look at multiple components.
* It's not clear where we would draw the line. The logical conclusion before
this commit would be to also wrap Arch.isX86(), Os.Tag.isSolarish(),
Abi.isOpenHarmony(), etc... this obviously quickly gets out of hand.
* It's nice to just have a single correct way of doing something.
Windows-only, depends on kernel32 in violation of zig std lib policy,
and redundant with other cross-platform APIs that perform the same
functionality.
I don't think these belong in std, at least not in their current form.
If someone wants to add these back I'd like to review the patch before
it lands.
Reverts 629e2e784495dd8ac91493fa7bb11e1772698e42
* fix merge conflicts
* rename the declarations
* reword documentation
* extract FixedBufferAllocator to separate file
* take advantage of locals
* remove the assertion about max alignment in Allocator API, leaving it
Allocator implementation defined
* fix non-inline function call in start logic
The GeneralPurposeAllocator implementation is totally broken because it
uses global state but I didn't address that in this commit.
heap.zig: define new default page sizes
heap.zig: add min/max_page_size and their options
lib/std/c: add miscellaneous declarations
heap.zig: add pageSize() and its options
switch to new page sizes, especially in GPA/stdlib
mem.zig: remove page_size
This allocator has no purpose since it cannot truly fulfill the role of
page allocation, and std.heap.wasm_allocator is better both in terms of
performance and code size.
This commit redefines `std.heap.page_allocator` to be less strict:
"On operating systems that support memory mapping, this allocator makes
a syscall directly for every allocation and free. Otherwise, it falls
back to the preferred singleton for the target. Thread-safe."
This now matches how it was actually being implemented, and matches its
use sites - which are mainly as the backing allocator for
`std.heap.ArenaAllocator`.
It is now composed of these main sections:
* Declarations that are shared among all operating systems.
* Declarations that have the same name, but different type signatures
depending on the operating system. Often multiple operating systems
share the same type signatures however.
* Declarations that are specific to a single operating system.
- These are imported one per line so you can see where they come from,
protected by a comptime block to prevent accessing the wrong one.
Closes#19352 by changing the convention to making types `void` and
functions `{}`, so that it becomes possible to update `@hasDecl` sites
to use `@TypeOf(f) != void` or `T != void`. Happily, this ended up
removing some duplicate logic and update some bitrotted feature
detection checks.
A handful of types have been modified to gain namespacing and type
safety. This is a breaking change.
Oh, and the last usage of `usingnamespace` site is eliminated.
std.heap.c_allocator was already doing this, however,
std.heap.raw_c_allocator, which asserts no allocations more than 16
bytes aligned, was not.
The zig compiler uses std.heap.raw_c_allocator, so it is affected by
this.
This eliminates some simple usages of `usingnamespace` in the standard
library. This construct may in future be removed from the language, and
is generally an inappropriate way to formulate code. It is also
problematic for incremental compilation, which may not initially support
projects using it.
I wasn't entirely sure what the appropriate namespacing for the types in
`std.os.uefi.tables` would be, so I ofted to preserve the current
namespacing, meaning this is not a breaking change. It's possible some
of the moved types should instead be namespaced under `BootServices`
etc, but this can be a future enhancement.
These changes enable me to use `GeneralPurposeAllocator` with my "Bring
Your Own OS" package. The previous checks for a freestanding target have
been expanded to `@hasDecl` checks.
- `root.os.heap.page_allocator` is used if it exists.
- `debug.isValidMemory` only calls `os.msync` if it's supported.
Implements issue #6451.
This was needed to support allocation on Plan 9 and now other operating
systems like DOS can also use it.
It is a modified version of the WasmAllocator since wasm also uses a
sbrk-esque allocation system.
This commit also adds the necessary system bits for sbrk to work on plan 9.
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:
* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
Anecdote 1: The generic version is way more popular than the non-generic
one in Zig codebase:
git grep -w alignForward | wc -l
56
git grep -w alignForwardGeneric | wc -l
149
git grep -w alignBackward | wc -l
6
git grep -w alignBackwardGeneric | wc -l
15
Anecdote 2: In my project (turbonss) that does much arithmetic and
alignment I exclusively use the Generic functions.
Anecdote 3: we used only the Generic versions in the Macho Man's linker
workshop.
The majority of these are in comments, some in doc comments which might
affect the generated documentation, and a few in parameter names -
nothing that should be breaking, however.
The previous version had a fatal flaw: it did ensureCapacity(1) on the
freelist when allocating, but I neglected to consider that you could
free() twice in a row. Silly!
This strategy allocates an intrusive freelist node with every
allocation, big or small. It also does not have the problems with resize
because in this case we can push the upper areas of freed stuff into the
corresponding freelist.