We already have a LICENSE file that covers the Zig Standard Library. We
no longer need to remind everyone that the license is MIT in every single
file.
Previously this was introduced to clarify the situation for a fork of
Zig that made Zig's LICENSE file harder to find, and replaced it with
their own license that required annual payments to their company.
However that fork now appears to be dead. So there is no need to
reinforce the copyright notice in every single file.
This is now no longer limited to targeting macOS natively but also
tries to detect the sysroot when targeting different Apple platforms
from macOS; for instance targeting iPhone Simulator from macOS. In
this case, Zig will try detecting the SDK path by invoking
`xcrun --sdk iphonesimulator --show-sdk-path`, and if the command
fails because the SDK doesn't exist (case when having CLT installed only)
or not having either Xcode or CLT installed, we simply return null
signaling that the user has to provide the sysroot themselves.
There was a bug in stage2 regarding iteration of function parameter AST.
This resulted in a false negative "unused parameter" compile error,
which, when fixed, revealed a bug in the std lib HashMap implementation.
* Added doc comments for `std.Target.ObjectFormat` enum
* `std.Target.oFileExt` is removed because it is incorrect for Plan-9
targets. Instead, use `std.Target.ObjectFormat.fileExt` and pass a
CPU architecture.
* Added `Compilation.Directory.joinZ` for when a null byte is desired.
* Improvements to `Compilation.create` logic for computing `use_llvm`
and reporting errors in contradictory flags. `-femit-llvm-ir` and
`-femit-llvm-bc` will now imply `-fLLVM`.
* Fix compilation when passing `.bc` files on the command line.
* Improvements to the stage2 LLVM backend:
- cleaned up error messages and error reporting. Properly bubble up
some errors rather than dumping to stderr; others turn into panics.
- properly call ZigLLVMCreateTargetMachine and
ZigLLVMTargetMachineEmitToFile and implement calculation of the
respective parameters (cpu features, code model, abi name, lto,
tsan, etc).
- LLVM module verification only runs in debug builds of the compiler
- use LLVMDumpModule rather than printToString because in the case
that we incorrectly pass a null pointer to LLVM it may crash during
dumping the module and having it partially printed is helpful in
this case.
- support -femit-asm, -fno-emit-bin, -femit-llvm-ir, -femit-llvm-bc
- Support LLVM backend when used with Mach-O and WASM linkers.
Some macros (for example any macro that uses token pasting) cannot be
directly translated to Zig, but may nevertheless still admit a Zig
implementation. This provides a mechanism for matching macros against
templates and mapping them to functions implemented in c_translation.zig.
A macro matches a template if it contains the same sequence of tokens, except
that the name and parameters may be renamed. No attempt is made to
semantically analyze the macro. For example the following two macros are
considered equivalent:
```C
```
But the following two are not:
```C
```
Use `@` syntax to escape `_` when used as an identifier.
Remove the stage1 astgen prohibition against assigning from `_`
Note: there a few stage1 bugs preventing `_` from being used as an identifier
for a local variable or function parameter; these will be fixed by stage2.
They are unlikely to arise in real C code since identifiers starting with
underscore are reserved for the implementation.
It now displays the byte with proper printability handling. This makes
the relevant compile error test case no longer a regression in quality
from stage1 to stage2.
In order to not regress the quality of compile errors, some improvements
had to be made.
* std.zig.parseCharLiteral is improved to return more detailed parse
failure information.
* tokenizer is improved to handle null bytes in the middle of strings,
character literals, and line comments.
* validating how many unicode escape digits in string literals is moved
to std.zig.parseStringLiteral rather than handled in the tokenizer.
* when a tokenizer error occurs, if the reported token is the 'invalid'
tag, an error note is added to point to the invalid byte location.
Further improvements would be:
- Mention the expected set of allowed bytes at this location.
- Display the invalid byte (if printable, print it, otherwise
escape-print it).
By requiring the source file to be null-terminated, we avoid extra
branching while simplifying the logic at the same time.
Running ast-check on a large zig source file (udivmodti4_test.zig),
master branch compared to this commit:
* 4% faster wall clock
* 7% fewer cache misses
* 1% fewer branches
The motivation for this commit is that there exists source files which
produce ast-check errors, but crash stage1 or otherwise trigger stage1
bugs. Previously to this commit, Zig would run AstGen, collect the
compile errors, run stage1, report stage1 compile errors and exit if
any, and then report AstGen compile errors.
The main change in this commit is to report AstGen errors prior to
invoking stage1, and in fact if any AstGen errors occur, do not invoke
stage1 at all.
This caused most of the compile error tests to fail due to things such
as unused local variables and mismatched stage1/stage2 error messages.
It was taking a long time to update the test cases one-by-one, so I
took this opportunity to unify the stage1 and stage2 testing harness,
specifically with regards to compile errors. In this way we can start
keeping track of which tests pass for 1, 2, or both.
`zig build test-compile-errors` no longer works; it is now integrated
into `zig build test-stage2`.
This is one step closer to executing compile error tests in parallel; in
fact the ThreadPool object is already in scope.
There are some cases where the stage1 compile errors were actually
better; those are left failing in this commit, to be addressed in a
follow-up commit.
Other changes in this commit:
* build.zig: improve support for -Dstage1 used with the test step.
* AstGen: minor cosmetic changes to error messages.
* stage2: add -fstage1 and -fno-stage1 flags. This now allows one to
download a binary of the zig compiler and use the llvm backend of
self-hosted. This was also needed for hooking up the test harness.
However, I realized that stage1 calls exit() and also has memory
leaks, so had to complicate the test harness by not using this flag
after all and instead invoking as a child process.
- These CLI flags will disappear once we start shipping the
self-hosted compiler as the main compiler. Until then, they can be
used to try out the work-in-progress stage2.
* stage2: select the LLVM backend by default for release modes, as long
as the target architecture is supported by LLVM.
* test harness: support setting the optimize mode
Translate enum types as the underlying integer type. Translate enum constants
as top-level integer constants of the correct type (which does not necessarily
match the enum integer type).
If an enum constant's type cannot be translated for some reason, omit it.
See discussion https://github.com/ziglang/zig/issues/2115#issuecomment-827968279Fixes#9153
* Remove parser error on double ampersand
* Add failing test for double ampersand case
* Add error when encountering double ampersand in AstGen
"Bit and" operator should not make sense when one of its operands
is an address.
* Check that 2 ampersands are adjacent to each other in source string
* Remove cases of unused variables in tests
Instead require `1e9` and `0x1p9`, disallowing the trailing dot.
This change to the grammar is consistent with forbidding `1.` and `0x1.`
as float literals and ensures there is only one way to do things here.
* Extracts AstGen logic from ir.cpp into astgen.cpp. Reduces the
largest file of stage1 from 33,551 lines to 25,510.
* tokenizer: rework it completely to match the stage2 tokenizer logic.
They can now be maintained together; when one is changed, the other
can be changed in the same way.
- Each token now takes up 13 bytes instead of 64 bytes. The tokenizer
does not parse char literals, string literals, integer literals,
etc into meaningful data. Instead, that happens during parsing or
astgen.
- no longer store line offsets. Error messages scan source
files to find the line/column as needed (same as stage2).
- main loop: instead of checking the loop, handle a null byte
explicitly in the switch statements. This is a nice improvement
that we may want to backport to stage2.
- delete some dead tokens, artifacts of past syntax that no longer
exists.
* Parser: fix a TODO by parsing builtin functions as tokens rather than
`@` as a separate token. This is how stage2 does it.
* Remove some debugging infrastructure. These will need to be redone,
if at all, as the code migrates to match stage2.
- remove the ast_render code.
- remove the IR debugging stuff
- remove teh token printing code