This function accepts a WaitGroup parameter and manages the reference
counting therein. It also is infallible.
The existing `spawn` function is still handy when the job wants to
further schedule more tasks.
This allows `std.Uri.resolve_inplace` to properly preserve the fact
that `new` is already escaped but `base` may not be. I originally tried
just moving `raw_uri` around, but it made uri resolution unmanagably
complicated, so I instead added per-component information to `Uri` which
allows extra allocations to be avoided when constructing uris with
components from different sources, and in some cases, deferring the work
all the way to when the uri is printed, where an allocator may not even
be needed.
Closes#19587
Reference:
https://github.com/ziglang/zig/pull/19500#discussion_r1556476973
Arena is now used for Diagnostic (tar and git). `deinit` is not called on Diagnostic
allowing us to reference strings from Diagnostic in UnpackResult without
dupe.
That seamed reasonable to me. Instead of using gpa for Diagnostic, and
then dupe to arena. Or using arena for both and making dupe so we can deinit
Diagnostic.
Using test cases from:
https://github.com/ianprime0509/pathological-packages repository.
Depends on existence of the FAT32 file system. Folder is in FAT32 file
system because it is case insensitive and and does not support symlinks.
It is complicated test case requires internet connection, depends on
existence of FAT32 in the specific location. But it is so valuable for
development. Running `zig test Package.zig` is so much faster than
building zig binary and running `zig fetch URL`. Committing it here
although it should probably be removed.
Closes#19557Closes#19561
Previously, `build.zig` was not being detected correctly by
`computeHash` for packages where there is a containing root directory.
Filter should be applied on path where package root folder (if
there is any) is stripped. Manifest is inside package root and has paths
relative to package root not temporary directory root.
Based on comment:
https://github.com/ziglang/zig/pull/19111#discussion_r1548640939
computeHash finds all files in temporary directory. There is no
difference on what path are they. When calculating hash normalized_path
must be set relative to package root. That's the place where we strip
root if needed.
I originally removed these in 402f967ed5339fa3d828b7fe1d57cdb5bf38dbf2.
I allowed them to be added back in #15299 because they were smuggled in
alongside a bug fix, however, I wasn't kidding when I said that I wanted
to take the design of std.http in a different direction than using this
data structure.
Instead, some headers are provided via explicit field names populated
while parsing the HTTP request/response, and some are provided via
new fields that support passing extra, arbitrary headers.
This resulted in simplification of logic in many places, as well as
elimination of the possibility of failure in many places. There is
less deinitialization code happening now.
Furthermore, it made it no longer necessary to clone the headers data
structure in order to handle redirects.
http_proxy and https_proxy fields are now pointers since it is common
for them to be unpopulated.
loadDefaultProxies is changed into initDefaultProxies to communicate
that it does not actually load anything from disk or from the network.
The function now is leaky; the API user must pass an already
instantiated arena allocator. Removes the need to deinitialize proxies.
Before, proxies stored arbitrary sets of headers. Now they only store
the authorization value.
Removed the duplicated code between https_proxy and http_proxy. Finally,
parsing failures of the environment variables result in errors being
emitted rather than silently ignoring the proxy.
error.CompressionNotSupported is renamed to
error.CompressionUnsupported, matching the naming convention from all
the other errors in the same set.
Removed documentation comments that were redundant with field and type
names.
Disabling zstd decompression in the server for now; see #18937.
I found some apparently dead code in src/Package/Fetch/git.zig. I want
to check with Ian about this.
I discovered that test/standalone/http.zig is dead code, it is only
being compiled but not being run. Furthermore it hangs at the end if you
run it manually. The previous commits in this branch were written under
the assumption that this test was being run with
`zig build test-standalone`.
The buffer for HTTP headers is now always provided via a static buffer.
As a consequence, OutOfMemory is no longer a member of the read() error
set, and the API and implementation of Client and Server are simplified.
error.HttpHeadersExceededSizeLimit is renamed to
error.HttpHeadersOversize.
Zig deflate compression/decompression implementation. It supports compression and decompression of gzip, zlib and raw deflate format.
Fixes#18062.
This PR replaces current compress/gzip and compress/zlib packages. Deflate package is renamed to flate. Flate is common name for deflate/inflate where deflate is compression and inflate decompression.
There are breaking change. Methods signatures are changed because of removal of the allocator, and I also unified API for all three namespaces (flate, gzip, zlib).
Currently I put old packages under v1 namespace they are still available as compress/v1/gzip, compress/v1/zlib, compress/v1/deflate. Idea is to give users of the current API little time to postpone analyzing what they had to change. Although that rises question when it is safe to remove that v1 namespace.
Here is current API in the compress package:
```Zig
// deflate
fn compressor(allocator, writer, options) !Compressor(@TypeOf(writer))
fn Compressor(comptime WriterType) type
fn decompressor(allocator, reader, null) !Decompressor(@TypeOf(reader))
fn Decompressor(comptime ReaderType: type) type
// gzip
fn compress(allocator, writer, options) !Compress(@TypeOf(writer))
fn Compress(comptime WriterType: type) type
fn decompress(allocator, reader) !Decompress(@TypeOf(reader))
fn Decompress(comptime ReaderType: type) type
// zlib
fn compressStream(allocator, writer, options) !CompressStream(@TypeOf(writer))
fn CompressStream(comptime WriterType: type) type
fn decompressStream(allocator, reader) !DecompressStream(@TypeOf(reader))
fn DecompressStream(comptime ReaderType: type) type
// xz
fn decompress(allocator: Allocator, reader: anytype) !Decompress(@TypeOf(reader))
fn Decompress(comptime ReaderType: type) type
// lzma
fn decompress(allocator, reader) !Decompress(@TypeOf(reader))
fn Decompress(comptime ReaderType: type) type
// lzma2
fn decompress(allocator, reader, writer !void
// zstandard:
fn DecompressStream(ReaderType, options) type
fn decompressStream(allocator, reader) DecompressStream(@TypeOf(reader), .{})
struct decompress
```
The proposed naming convention:
- Compressor/Decompressor for functions which return type, like Reader/Writer/GeneralPurposeAllocator
- compressor/compressor for functions which are initializers for that type, like reader/writer/allocator
- compress/decompress for one shot operations, accepts reader/writer pair, like read/write/alloc
```Zig
/// Compress from reader and write compressed data to the writer.
fn compress(reader: anytype, writer: anytype, options: Options) !void
/// Create Compressor which outputs the writer.
fn compressor(writer: anytype, options: Options) !Compressor(@TypeOf(writer))
/// Compressor type
fn Compressor(comptime WriterType: type) type
/// Decompress from reader and write plain data to the writer.
fn decompress(reader: anytype, writer: anytype) !void
/// Create Decompressor which reads from reader.
fn decompressor(reader: anytype) Decompressor(@TypeOf(reader)
/// Decompressor type
fn Decompressor(comptime ReaderType: type) type
```
Comparing this implementation with the one we currently have in Zig's standard library (std).
Std is roughly 1.2-1.4 times slower in decompression, and 1.1-1.2 times slower in compression. Compressed sizes are pretty much same in both cases.
More resutls in [this](https://github.com/ianic/flate) repo.
This library uses static allocations for all structures, doesn't require allocator. That makes sense especially for deflate where all structures, internal buffers are allocated to the full size. Little less for inflate where we std version uses less memory by not preallocating to theoretical max size array which are usually not fully used.
For deflate this library allocates 395K while std 779K.
For inflate this library allocates 74.5K while std around 36K.
Inflate difference is because we here use 64K history instead of 32K in std.
If merged existing usage of compress gzip/zlib/deflate need some changes. Here is example with necessary changes in comments:
```Zig
const std = @import("std");
// To get this file:
// wget -nc -O war_and_peace.txt https://www.gutenberg.org/ebooks/2600.txt.utf-8
const data = @embedFile("war_and_peace.txt");
pub fn main() !void {
var gpa = std.heap.GeneralPurposeAllocator(.{}){};
defer std.debug.assert(gpa.deinit() == .ok);
const allocator = gpa.allocator();
try oldDeflate(allocator);
try new(std.compress.flate, allocator);
try oldZlib(allocator);
try new(std.compress.zlib, allocator);
try oldGzip(allocator);
try new(std.compress.gzip, allocator);
}
pub fn new(comptime pkg: type, allocator: std.mem.Allocator) !void {
var buf = std.ArrayList(u8).init(allocator);
defer buf.deinit();
// Compressor
var cmp = try pkg.compressor(buf.writer(), .{});
_ = try cmp.write(data);
try cmp.finish();
var fbs = std.io.fixedBufferStream(buf.items);
// Decompressor
var dcp = pkg.decompressor(fbs.reader());
const plain = try dcp.reader().readAllAlloc(allocator, std.math.maxInt(usize));
defer allocator.free(plain);
try std.testing.expectEqualSlices(u8, data, plain);
}
pub fn oldDeflate(allocator: std.mem.Allocator) !void {
const deflate = std.compress.v1.deflate;
// Compressor
var buf = std.ArrayList(u8).init(allocator);
defer buf.deinit();
// Remove allocator
// Rename deflate -> flate
var cmp = try deflate.compressor(allocator, buf.writer(), .{});
_ = try cmp.write(data);
try cmp.close(); // Rename to finish
cmp.deinit(); // Remove
// Decompressor
var fbs = std.io.fixedBufferStream(buf.items);
// Remove allocator and last param
// Rename deflate -> flate
// Remove try
var dcp = try deflate.decompressor(allocator, fbs.reader(), null);
defer dcp.deinit(); // Remove
const plain = try dcp.reader().readAllAlloc(allocator, std.math.maxInt(usize));
defer allocator.free(plain);
try std.testing.expectEqualSlices(u8, data, plain);
}
pub fn oldZlib(allocator: std.mem.Allocator) !void {
const zlib = std.compress.v1.zlib;
var buf = std.ArrayList(u8).init(allocator);
defer buf.deinit();
// Compressor
// Rename compressStream => compressor
// Remove allocator
var cmp = try zlib.compressStream(allocator, buf.writer(), .{});
_ = try cmp.write(data);
try cmp.finish();
cmp.deinit(); // Remove
var fbs = std.io.fixedBufferStream(buf.items);
// Decompressor
// decompressStream => decompressor
// Remove allocator
// Remove try
var dcp = try zlib.decompressStream(allocator, fbs.reader());
defer dcp.deinit(); // Remove
const plain = try dcp.reader().readAllAlloc(allocator, std.math.maxInt(usize));
defer allocator.free(plain);
try std.testing.expectEqualSlices(u8, data, plain);
}
pub fn oldGzip(allocator: std.mem.Allocator) !void {
const gzip = std.compress.v1.gzip;
var buf = std.ArrayList(u8).init(allocator);
defer buf.deinit();
// Compressor
// Rename compress => compressor
// Remove allocator
var cmp = try gzip.compress(allocator, buf.writer(), .{});
_ = try cmp.write(data);
try cmp.close(); // Rename to finisho
cmp.deinit(); // Remove
var fbs = std.io.fixedBufferStream(buf.items);
// Decompressor
// Rename decompress => decompressor
// Remove allocator
// Remove try
var dcp = try gzip.decompress(allocator, fbs.reader());
defer dcp.deinit(); // Remove
const plain = try dcp.reader().readAllAlloc(allocator, std.math.maxInt(usize));
defer allocator.free(plain);
try std.testing.expectEqualSlices(u8, data, plain);
}
```
Build manifest files support `lazy: true` for dependency sections.
This causes the auto-generated dependencies.zig to have 2 more
possibilities:
1. It communicates whether a dependency is lazy or not.
2. The dependency might be acknowledged, but missing due to being lazy
and not fetched.
Lazy dependencies are not fetched by default, but if they are already
fetched then they are provided to the build script.
The build runner reports the set of missing lazy dependenices that are
required to the parent process via stdout and indicates the situation
with exit code 3.
std.Build now has a `lazyDependency` function. I'll let the doc comments
speak for themselves:
When this function is called, it means that the current build does, in
fact, require this dependency. If the dependency is already fetched, it
proceeds in the same manner as `dependency`. However if the dependency
was not fetched, then when the build script is finished running, the
build will not proceed to the make phase. Instead, the parent process
will additionally fetch all the lazy dependencies that were actually
required by running the build script, rebuild the build script, and then
run it again.
In other words, if this function returns `null` it means that the only
purpose of completing the configure phase is to find out all the other
lazy dependencies that are also required.
It is allowed to use this function for non-lazy dependencies, in which
case it will never return `null`. This allows toggling laziness via
build.zig.zon without changing build.zig logic.
The CLI for `zig build` detects this situation, but the logic for then
redoing the build process with these extra dependencies fetched is not
yet implemented.
The logic here already caught the case when a dependency path tried to
escape out of the zig cache directory using up directories. However, it
did not catch the case when the relative path tried to reach into a
different path within the zig-cache. For example, if it asked for
"../../../blah" then it would be caught, but if it asked for "../blah"
then it would try to resolve as "zig-cache/p/blah" and probably result
in file-not-found, or perhaps resolve to a different package if someone
inadvertently used a valid package hash instead of "blah".
Now it correctly gives a "dependency path outside project" error,
however, still allows relative paths with up-dirs that were not fetched
via URL.