Gimli was a game changer. A permutation that is large enough to be
used in sponge-like constructions, yet small enough to be compact
to implement and fast on a wide range of platforms.
And Gimli being part of the Zig standard library was awesome.
But since then, Gimli entered the NIST Lightweight Cryptography
Competition, competing againt other candidates sharing a similar set
of properties.
Unfortunately, Gimli didn't pass the 3rd round.
There are no practical attacks against Gimli when used correctly, but
NIST's decision means that Gimli is unlikely to ever get any traction.
So, maybe the time has come to move Gimli from the standard library
to another repository.
We shouldn't do it without providing an alternative, though.
And the best candidate for this is probably Xoodoo.
Xoodoo is the core function of Xoodyak, one of the finalists of the
NIST LWC competition, and the most direct competitor to Gimli. It is
also a 384-bit permutation, so it can easily be used everywhere Gimli
was used with no parameter changes.
It is the building block of Xoodyak (for actual encryption and hashing)
as well as Charm, that some Zig applications are already using.
Like Gimli that it was heavily inspired from, it is compact and
suitable for constrained environments.
This change adds the Xoodoo permutation to std.crypto.core.
The set of public functions includes everything required to later
implement existing Xoodoo-based constructions.
In order to prepare for the Gimli deprecation, the default
CSPRNG was changed to a Xoodoo-based that works exactly the same way.
A hash function cascade was a common way to avoid length-extension
attacks with traditional hash functions such as the SHA-2 family.
Add `std.crypto.hash.composition` to do exactly that using arbitrary
hash functions, and pre-define the common SHA2-based ones.
With this, we can now sign and verify Bitcoin signatures in pure Zig.
std.crypto.ecc: add support for the secp256k1 curve
Usage of the secp256k1 elliptic curve recently grew exponentially,
since this is the curve used by Bitcoin and other popular blockchains
such as Ethereum.
With this, Zig has support for all the widely deployed elliptic curves
today.
ECDSA is the most commonly used signature scheme today, mainly for
historical and conformance reasons. It is a necessary evil for
many standard protocols such as TLS and JWT.
It is tricky to implement securely and has been the root cause of
multiple security disasters, from the Playstation 3 hack to multiple
critical issues in OpenSSL and Java.
This implementation combines lessons learned from the past with
recent recommendations.
In Zig, the NIST curves that ECDSA is almost always instantied with
use formally verified field arithmetic, giving us peace of mind
even on edge cases. And the API rejects neutral elements where it
matters, and unconditionally checks for non-canonical encoding for
scalars and group elements. This automatically eliminates common
vulnerabilities such as https://sk.tl/2LpS695v .
ECDSA's security heavily relies on the security of the random number
generator, which is a concern in some environments.
This implementation mitigates this by computing deterministic
nonces using the conservative scheme from Pornin et al. with the
optional addition of randomness as proposed in Ericsson's
"Deterministic ECDSA and EdDSA Signatures with Additional Randomness"
document. This approach mitigates both the implications of a weak RNG
and the practical implications of fault attacks.
Project Wycheproof is a Google project to test crypto libraries against
known attacks by triggering edge cases. It discovered vulnerabilities
in virtually all major ECDSA implementations.
The entire set of ECDSA-P256-SHA256 test vectors from Project Wycheproof
is included here. Zero defects were found in this implementation.
The public API differs from the Ed25519 one. Instead of raw byte strings
for keys and signatures, we introduce Signature, PublicKey and SecretKey
structures.
The reason is that a raw byte representation would not be optimal.
There are multiple standard representations for keys and signatures,
and decoding/encoding them may not be cheap (field elements have to be
converted from/to the montgomery domain).
So, the intent is to eventually move ed25519 to the same API, which
is not going to introduce any performance regression, but will bring
us a consistent API, that we can also reuse for RSA.
After P-256, here comes P-384, also known as secp384r1.
Like P-256, it is required for TLS, and is the current NIST recommendation for key exchange and signatures, for better or for worse.
Like P-256, all the finite field arithmetic has been computed and verified to be correct by fiat-crypto.
We already have a LICENSE file that covers the Zig Standard Library. We
no longer need to remind everyone that the license is MIT in every single
file.
Previously this was introduced to clarify the situation for a fork of
Zig that made Zig's LICENSE file harder to find, and replaced it with
their own license that required annual payments to their company.
However that fork now appears to be dead. So there is no need to
reinforce the copyright notice in every single file.
Uses verified code generated by fiat-crypto for field arithmetic, and complete formulas to avoid side channels.
There's still plenty of room for optimizations, especially with a fixed base. But this gives us a framework to easily add other similar curves.
std/crypto: use finer-grained error sets in function signatures
Returning the `crypto.Error` error set for all crypto operations
was very convenient to ensure that errors were used consistently,
and to avoid having multiple error names for the same thing.
The flipside is that callers were forced to always handle all
possible errors, even those that could never be returned by a
function.
This PR makes all functions return union sets of the actual errors
they can return.
The error sets themselves are all limited to a single error.
Larger sets are useful for platform-specific APIs, but we don't have
any of these in `std/crypto`, and I couldn't find any meaningful way
to build larger sets.
See https://eprint.iacr.org/2019/1492.pdf for justification.
8 rounds ChaCha20 provides a 2.5x speedup, and is still believed
to be safe.
Round-reduced versions are actually deployed (ex: Android filesystem
encryption), and thanks to the magic of comptime, it doesn't take much
to support them.
This also makes the ChaCha20 code more consistent with the Salsa20 code,
removing internal functions that were not part of the public API any more.
No breaking changes; the public API remains backwards compatible.
OCB has been around for a long time.
It's simpler, faster and more secure than AES-GCM.
RFC 7253 was published in 2014. OCB also won the CAESAR competition
along with AEGIS.
It's been implemented in OpenSSL and other libraries for years.
So, why isn't everybody using it instead of GCM? And why don't we
have it in Zig already?
The sad reason for this was patents. GCM was invented only to work
around these patents, and for all this time, OCB was that nice
thing that everybody knew existed but that couldn't be freely used.
That just changed. The OCB patents are now abandoned, and OCB's
author just announced that OCB was officially public domain.
std.crypto.random
* cross platform, even freestanding
* can't fail. on initialization for some systems requires calling
os.getrandom(), in which case there are rare but theoretically
possible errors. The code panics in these cases, however the
application may choose to override the default seed function and then
handle the failure another way.
* thread-safe
* supports the full Random interface
* cryptographically secure
* no syscall required to initialize on Linux (AT_RANDOM)
* calls arc4random on systems that support it
`std.crypto.randomBytes` is removed in favor of `std.crypto.random.bytes`.
I moved some of the Random implementations into their own files in the
interest of organization.
stage2 no longer requires passing a RNG; instead it uses this API.
Closes#6704
We currently have ciphers optimized for performance, for
compatibility, for size and for specific CPUs.
However we lack a class of ciphers that is becoming increasingly
important, as Zig is being used for embedded systems, but also as
hardware-level side channels keep being found on (Intel) CPUs.
Here is ISAPv2, a construction specifically designed for resilience
against leakage and fault attacks.
ISAPv2 is obviously not optimized for performance, but can be an
option for highly sensitive data, when the runtime environment cannot
be trusted.
This is a trivial implementation that just does a or[xor] loop.
However, this pattern is used by virtually all crypto libraries and
in practice, even without assembly barriers, LLVM never turns it into
code with conditional jumps, even if one of the parameters is constant.
This has been verified to still be the case with LLVM 11.0.0.
With the simple rule that whenever we have or will have 2 similar
functions, they should be in their own namespace.
Some of these new namespaces currently contain a single function.
This is to prepare for reduced-round versions that are likely to
be added later.
The bcrypt function intentionally requires quite a lot of CPU cycles
to complete.
In addition to that, not having its full state constantly in the
CPU L1 cache causes a massive performance drop.
These properties slow down brute-force attacks against low-entropy
inputs (typically passwords), and GPU-based attacks get little
to no advantages over CPUs.
The NaCl constructions are available in pretty much all programming
languages, making them a solid choice for applications that require
interoperability.
Go includes them in the standard library, JavaScript has the popular
tweetnacl.js module, and reimplementations and ports of TweetNaCl
have been made everywhere.
Zig has almost everything that NaCl has at this point, the main
missing component being the Salsa20 cipher, on top on which NaCl's
secretboxes, boxes, and sealedboxes can be implemented.
So, here they are!
And clean the X25519 API up a little bit by the way.
- use `PascalCase` for all types. So, AES256GCM is now Aes256Gcm.
- consistently use `_length` instead of mixing `_size` and `_length` for the
constants we expose
- Use `minimum_key_length` when it represents an actual minimum length.
Otherwise, use `key_length`.
- Require output buffers (for ciphertexts, macs, hashes) to be of the right
size, not at least of that size in some functions, and the exact size elsewhere.
- Use a `_bits` suffix instead of `_length` when a size is represented as a
number of bits to avoid confusion.
- Functions returning a constant-sized slice are now defined as a slice instead
of a pointer + a runtime assertion. This is the case for most hash functions.
- Use `camelCase` for all functions instead of `snake_case`.
No functional changes, but these are breaking API changes.
Showcase that Zig can be a great option for high performance cryptography.
The AEGIS family of authenticated encryption algorithms was selected for
high-performance applications in the final portfolio of the CAESAR
competition.
They reuse the AES core function, but are substantially faster than the
CCM, GCM and OCB modes while offering a high level of security.
AEGIS algorithms are especially fast on CPUs with built-in AES support, and
the 128L variant fully takes advantage of the pipeline in modern Intel CPUs.
Performance of the Zig implementation is on par with libsodium.
* Reorganize crypto/aes in order to separate parameters, implementations and
modes.
* Add a zero-cost abstraction over the internal representation of a block,
so that blocks can be kept in vector registers in optimized implementations.
* Add architecture-independent aesenc/aesdec/aesenclast/aesdeclast operations,
so that any AES-based primitive can be implemented, including these that don't
use the original key schedule (AES-PRF, AEGIS, MeowHash...)
* Add support for parallelization/wide blocks to take advantage of hardware
implementations.
* Align T-tables to cache lines in the software implementations to slightly
reduce side channels.
* Add an optimized implementation for modern Intel CPUs with AES-NI.
* Add new tests (AES256 key expansion).
* Reimplement the counter mode to work with any block cipher, any endianness
and to take advantage of wide blocks.
* Add benchmarks for AES.
Password hashing functions are not general-purpose KDFs, and KDFs
don't have to satisfy the same properties as a PHF.
This will allow fast KDFs such as the HKDF construction to be in a
category of their own, while clarifying what functions are suitable
for using passwords as inputs.
SipHash *is* a cryptographic function, with a 128-bit security level.
However, it is not a regular hash function: a secret key is required,
and knowledge of that key allows collisions to be quickly computed offline.
SipHash is therefore more suitable to be used as a MAC.
The same API as other MACs was implemented in addition to functions directly
returning an integer.
The benchmarks have been updated accordingly.
No changes to the SipHash implementation itself.
- This avoids having multiple `init()` functions for every combination
of optional parameters
- The API is consistent across all hash functions
- New options can be added later without breaking existing applications.
For example, this is going to come in handy if we implement parallelization
for BLAKE2 and BLAKE3.
- We don't have a mix of snake_case and camelCase functions any more, at
least in the public crypto API
Support for BLAKE2 salt and personalization (more commonly called context)
parameters have been implemented by the way to illustrate this.
Justification:
- reset() is unnecessary; states that have to be reused can be copied
- reset() is error-prone. Copying a previous state prevents forgetting
struct members.
- reset() forces implementation to store sensitive data (key, initial state)
in memory even when they are not needed.
- reset() is confusing as it has a different meaning elsewhere in Zig.
Instead of having all primitives and constructions share the same namespace,
they are now organized by category and function family.
Types within the same category are expected to share the exact same API.