The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.
This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
This is a misfeature that we inherited from LLVM:
* https://reviews.llvm.org/D61259
* https://reviews.llvm.org/D61939
(`aarch64_32` and `arm64_32` are equivalent.)
I truly have no idea why this triple passed review in LLVM. It is, to date, the
*only* tag in the architecture component that is not, in fact, an architecture.
In reality, it is just an ILP32 ABI for AArch64 (*not* AArch32).
The triples that use `aarch64_32` look like `aarch64_32-apple-watchos`. Yes,
that triple is exactly what you think; it has no ABI component. They really,
seriously did this.
Since only Apple could come up with silliness like this, it should come as no
surprise that no one else uses `aarch64_32`. Later on, a GNU ILP32 ABI for
AArch64 was developed, and support was added to LLVM:
* https://reviews.llvm.org/D94143
* https://reviews.llvm.org/D104931
Here, sanity seems to have prevailed, and a triple using this ABI looks like
`aarch64-linux-gnu_ilp32` as you would expect.
As can be seen from the diffs in this commit, there was plenty of confusion
throughout the Zig codebase about what exactly `aarch64_32` was. So let's just
remove it. In its place, we'll use `aarch64-watchos-ilp32`,
`aarch64-linux-gnuilp32`, and so on. We'll then translate these appropriately
when talking to LLVM. Hence, this commit adds the `ilp32` ABI tag (we already
have `gnuilp32`).
This implementation is now a direct replacement for the `kernel32` one.
New bitflags for named pipes and other generic ones were added based on
browsing the ReactOS sources.
`UNICODE_STRING.Buffer` has also been changed to be nullable, as
this is what makes the implementation work.
This required some changes to places accesssing the buffer after a
`SUCCESS`ful return, most notably `QueryObjectName` which even referred
to it being nullable.
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:
* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
Now we can reuse the table between CPU model parsers on Linux and
Windows.
Use similar parsing structure for Windows as we do for Linux. On
Windows, we rely on two entries in the registry per CPU core:
`CP 4000` and `Identifier`. Collating the data from the two allows
us recreating most of the `/proc/cpuinfo` data natively on Windows.
Additionally, we still allow for overwriting any CPU features as flagged
by pulling the feature data embedded in `SharedUserData`.
We already have a LICENSE file that covers the Zig Standard Library. We
no longer need to remind everyone that the license is MIT in every single
file.
Previously this was introduced to clarify the situation for a fork of
Zig that made Zig's LICENSE file harder to find, and replaced it with
their own license that required annual payments to their company.
However that fork now appears to be dead. So there is no need to
reinforce the copyright notice in every single file.