This is a misfeature that we inherited from LLVM:
* https://reviews.llvm.org/D61259
* https://reviews.llvm.org/D61939
(`aarch64_32` and `arm64_32` are equivalent.)
I truly have no idea why this triple passed review in LLVM. It is, to date, the
*only* tag in the architecture component that is not, in fact, an architecture.
In reality, it is just an ILP32 ABI for AArch64 (*not* AArch32).
The triples that use `aarch64_32` look like `aarch64_32-apple-watchos`. Yes,
that triple is exactly what you think; it has no ABI component. They really,
seriously did this.
Since only Apple could come up with silliness like this, it should come as no
surprise that no one else uses `aarch64_32`. Later on, a GNU ILP32 ABI for
AArch64 was developed, and support was added to LLVM:
* https://reviews.llvm.org/D94143
* https://reviews.llvm.org/D104931
Here, sanity seems to have prevailed, and a triple using this ABI looks like
`aarch64-linux-gnu_ilp32` as you would expect.
As can be seen from the diffs in this commit, there was plenty of confusion
throughout the Zig codebase about what exactly `aarch64_32` was. So let's just
remove it. In its place, we'll use `aarch64-watchos-ilp32`,
`aarch64-linux-gnuilp32`, and so on. We'll then translate these appropriately
when talking to LLVM. Hence, this commit adds the `ilp32` ABI tag (we already
have `gnuilp32`).
with this rewrite we can call functions inside of
inline assembly, enabling us to use the default start.zig logic
all that's left is to implement lr/sc loops for atomically manipulating
1 and 2 byte values, after which we can use the segfault handler logic.
the risc-v backend doesn't have `@cmpxchg*` implemented and so it can't use the hint that the current page-allocator uses.
this work-around branch can be removed when I implement the atomic built-in.
The flag makes compiler_rt and libfuzzer be in debug mode.
Also:
* fuzzer: override debug logs and disable debug logs for frequently
called functions
* std.Build.Fuzz: fix bug of rerunning the old unit test binary
* report errors from rebuilding the unit tests better
* link.Elf: additionally add tsan lib and fuzzer lib to the hash
This flag makes the build runner rebuild unit tests after the pipeline
finishes, if it finds any unit tests.
I did not make this integrate with file system watching yet.
The test runner is updated to detect which tests are fuzz tests.
Run step is updated to track which test indexes are fuzz tests.
Switches from using r1 as a temporary to r2. That way, we don't have to set the
`noat` assembler option. (r1 is the scratch register used by the assembler's
pseudoinstructions; the assembler warns when code uses that register explicitly
without `noat` set.)
PR [19271](https://github.com/ziglang/zig/pull/19271) added some static function implementations from kernel32, but some parts of the library still used the dynamically loaded versions.
* Add -f(no-)sanitize-coverage-trace-pc-guard CLI flag which defaults to
off. This value lowers to TracePCGuard = true (LLVM backend) and -Xclang
-fsanitize-coverage-trace-pc-guard. These settings are not
automatically included with -ffuzz.
* Add `Build.Step.Compile` flag for sanitize_coverage_trace_pc_guard
with appropriate documentation.
* Add `zig cc` integration for the respective flags.
* Avoid crashing in ELF linker code when -ffuzz -femit-llvm-ir used
together.