Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:
* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
The majority of these are in comments, some in doc comments which might
affect the generated documentation, and a few in parameter names -
nothing that should be breaking, however.
* docs(std.math): elaborate on difference between absCast and absInt
* docs(std.rand.Random.weightedIndex): elaborate on likelihood
I think this makes it easier to understand.
* langref: add small reminder
* docs(std.fs.path.extension): brevity
* docs(std.bit_set.StaticBitSet): mention the specific types
* std.debug.TTY: explain what purpose this struct serves
This should also make it clearer that this struct is not supposed to provide unrelated terminal manipulation functionality such as setting the cursor position or something because terminals are complicated and we should keep this struct simple and focused on debugging.
* langref(package listing): brevity
* langref: explain what exactly `threadlocal` causes to happen
* std.array_list: link between swapRemove and orderedRemove
Maybe this can serve as a TLDR and make it easier to decide.
* PrefetchOptions.locality: clarify docs that this is a range
This confused me previously and I thought I can only use either 0 or 3.
* fix typos and more
* std.builtin.CallingConvention: document some CCs
* langref: explain possibly cryptic names
I think it helps knowing what exactly these acronyms (@clz and @ctz) and
abbreviations (@popCount) mean.
* variadic function error: add missing preposition
* std.fmt.format docs: nicely hyphenate
* help menu: say what to optimize for
I think this is slightly more specific than just calling it
"optimizations". These are speed optimizations. I used the word
"performance" here.
We do not need more for the purpose of parsing and synthesising
unwind info by the linker. If we ever decide to generate unwind
info for Zig by the compiler, we can re-add packed struct defs
again.
Instead of generating sections upfront, allow generation by scanning
the object files for input -> output sections mapping. Next, always
strive to keep output sections in the final container sorted as they
appear in the final binary. This makes the linker less messy wrt
handling of output sections sort order for dyld/macOS not to complain.
There's still more work to be done for incremental context though
to make this work but looks promising already.
We were accidentally returning a pointer to stack memory, because these
arguments were passed by value. It's just an accident that stage 1 was
passing these by reference, so things were alright until stage 3.
This is a prelude to a more elaborate work which will implement
`-dead_strip` flag - garbage collection of unreachable atoms. Here,
when sorting sections, we also check that the section is actually
populated with some atoms, and if not, we exclude it from the final
linked image. This can happen when we do not import any symbols
from dynamic libraries in which case we will not be populating
the stubs sections or the GOT table, implying we can skip allocating
those sections. Furthermore, we also make a check that a segment
is actually occupied too, with the exception of `__TEXT` segment
which is non-optional given that it wraps the header and load commands
and thus is required by the `dyld` to perform dynamic linking, and
`__PAGEZERO` which is generally non-optional when the linked image
is an executable. For any other segment, if its section count is
zero, we mark it as dead and skip allocating it and generating
a load command for it.
This commit also includes some minor improvements to the linker such
as refactoring of the segment allocating codepaths, skipping
`__PAGEZERO` generation for dylibs, and skipping generation of zero-sized
atoms for special symbols such as `__mh_execute_header` and `___dso_handle`.
These special symbols are only allocated local and global symbol pair
and their VM addresses is set to the start of the `__TEXT` segment,
but no `Atom` is created, as it's not necessary given that they never
carry any machine code.
Finally, we now always force-link against `libSystem` which turns out
to be required for `dyld` to properly handle `LC_MAIN` load command
on older macOS versions such as 10.15.7.
This way, if the user wants to use `codesign` (or other tool) they
will not be forced to `-f` force signature update. This matches
the behavior promoted by Apple's `ld64` linker.