* std lib tests are passing on x86_64-linux with and without -lc
* stage2 is building from source on x86_64-linux
* down to 38 remaining uses of `usingnamespace`
The main purpose of this branch is to explore avoiding the
`usingnamespace` feature of the zig language, specifically with regards
to `std.os` and related functionality.
If this experiment is successful, it will provide a data point on
whether or not it would be practical to entirely remove `usingnamespace`
from the language.
In this commit, `usingnamespace` has been completely eliminated from
the Linux x86_64 compilation path, aside from io_uring.
The behavior tests pass, however that's as far as this branch goes. It is
very breaking, and a lot more work is needed before it could be
considered mergeable. I wanted to put a pull requset up early so that
zig programmers have time to provide feedback.
This is progress towards closing #6600 since it clarifies where the
actual "owner" of each declaration is, and reduces the number of
different ways to import the same declarations.
One of the main organizational strategies used here is to do namespacing
with real namespaces (e.g. structs) rather than by having declarations
share a common prefix (the C strategy). It's no coincidence that
`usingnamespace` has similar semantics to `#include` and becomes much
less necessary when using proper namespaces.
We already have a LICENSE file that covers the Zig Standard Library. We
no longer need to remind everyone that the license is MIT in every single
file.
Previously this was introduced to clarify the situation for a fork of
Zig that made Zig's LICENSE file harder to find, and replaced it with
their own license that required annual payments to their company.
However that fork now appears to be dead. So there is no need to
reinforce the copyright notice in every single file.
The primary purpose of this change is to eliminate one usage of
`usingnamespace` in the standard library - specifically the usage for
errno values in `std.os.linux`.
This is accomplished by truncating the `E` prefix from error values, and
making errno a proper enum.
A similar strategy can be used to eliminate some other `usingnamespace`
sites in the std lib.
Previous to #7082, users could overwrite PATH_MAX in the root file to support std.os.toPosixPath, permitting the "bring your own operating system" layer to implement the POSIX API for opening files. Unfortunately that is no longer the case.
This commit intends to fix what is arguably a regression from 0.7 in a way that doesn't break any code targeting 0.8.0, making it suitable to be included in a 0.8 patch release.
However in a future release that permits breaking changes, I am of the opinion that it would be beneficial to overwrite the value, even for "supported" operating systems. Same for all the other POSIX/BYOOS functions and values. However this is beyond the scope of this commit. Further discussion of this will be made into an issue in due time.
Since v0.23 release of Wasmtime, if we want to iterate a directory
Y then directory Y needed to have been granted `fd_readdir` right.
However, it is now also required for directory X to carry `fd_readdir`
right, and so on, up-chain all the way until we reach the preopen
(which possesses all rights by default).
This caused problems for us since our libstd implementation is more
fine-grained and allowed for parent dirs not to carry the right while
allow for iterating on its children. My proposal here is to always
grant `fd_readdir` right as part of
`std.fs.Dir.OpenDirOptions.access_sub_paths`. This seems to be the
approach taken by Rust also, plus we should be justified to take this
approach since WASI is experimental and snapshot1 will be discontinued
eventually and replaced with a new approach to access management
that will require a complete rewrite of our libstd anyhow.
Conflicts:
* build.zig
* src/Compilation.zig
* src/codegen/spirv/spec.zig
* src/link/SpirV.zig
* test/stage2/darwin.zig
- this one might be problematic; start.zig looks for `main` in the
root source file, not `_main`. Not sure why there is an underscore
there in master branch.
This makes a few changes to the base64 codecs.
* The padding character is optional. The common "URL-safe" variant, in
particular, is generally not used with padding. This is also the case for
password hashes, so having this will avoid code duplication with bcrypt,
scrypt and other functions.
* The URL-safe variant is added. Instead of having individual constants
for each parameter of each variant, we are now grouping these in a
struct. So, `standard_pad_char` just becomes `standard.pad_char`.
* Types are not `snake_case`'d any more. So, `standard_encoder` becomes
`standard.Encoder`, as it is a type.
* Creating a decoder with ignored characters required the alphabet and
padding. Now, `standard.decoderWithIgnore(<ignored chars>)` returns a
decoder with the standard parameters and the set of ignored chars.
* Whatever applies to `standard.*` obviously also works with `url_safe.*`
* the `calcSize()` interface was inconsistent, taking a length in the
encoder, and a slice in the encoder. Rename the variant that takes a
slice to `calcSizeForSlice()`.
* In the decoder with ignored characters, add `calcSizeUpperBound()`,
which is more useful than the one that takes a slice in order to size
a fixed buffer before we have the data.
* Return `error.InvalidCharacter` when the input actually contains
characters that are neither padding nor part of the alphabet. If we
hit a padding issue (which includes extra bits at the end),
consistently return `error.InvalidPadding`.
* Don't keep the `char_in_alphabet` array permanently in a decoder;
it is only required for sanity checks during initialization.
* Tests are unchanged, but now cover both the standard (padded) and
the url-safe (non-padded) variants.
* Add an error set, rename `OutputTooSmallError` to `NoSpaceLeft`
to match the `hex2bin` equivalent.
std.crypto.random
* cross platform, even freestanding
* can't fail. on initialization for some systems requires calling
os.getrandom(), in which case there are rare but theoretically
possible errors. The code panics in these cases, however the
application may choose to override the default seed function and then
handle the failure another way.
* thread-safe
* supports the full Random interface
* cryptographically secure
* no syscall required to initialize on Linux (AT_RANDOM)
* calls arc4random on systems that support it
`std.crypto.randomBytes` is removed in favor of `std.crypto.random.bytes`.
I moved some of the Random implementations into their own files in the
interest of organization.
stage2 no longer requires passing a RNG; instead it uses this API.
Closes#6704