This is a reimplementation of Io.Threaded that fixes the issues
highlighted in the recent Zulip discussion. It's poorly tested but it
does successfully run to completion the litmust test example that I
offered in the discussion.
This implementation has the following key design decisions:
- `t.cpu_count` is used as the threadpool size.
- `t.concurrency_limit` is used as the maximum number of
"burst, one-shot" threads that can be spawned by `io.concurrent` past
`t.cpu_count`.
- `t.available_thread_count` is the number of threads in the pool that
is not currently busy with work (the bookkeeping happens in the worker
function).
- `t.one_shot_thread_count` is the number of active threads that were
spawned by `io.concurrent` past `t.cpu_count`.
In this implementation:
- `io.async` first tries to decrement `t.available_thread_count`. If
there are no threads available, it tries to spawn a new one if possible,
otherwise it runs the task immediately.
- `io.concurrent` first tries to use a thread in the pool same as
`io.async`, but on failure (no available threads and pool size limit
reached) it tries to spawn a new one-shot thread. One shot threads
run a different main function that just executes one task, decrements
the number of active one shot threads, and then exits.
A relevant future improvement is to have one-shot threads stay on for a
few seconds (and potentially pick up a new task) to amortize spawning
costs.
restores code closer to master branch in hopes of avoiding a regression
that was introduced when this was based on openSelfExe rather than
GetModuleFileNameExW.
Now std.Io.Threaded can return error.ConcurrencyUnavailable rather than
asserting. This is handy for logic that wants to try a concurrent
implementation but then fall back to a synchronous one.
Microsoft documentation says "The if_nametoindex function is implemented
for portability of applications with Unix environments, but the
ConvertInterface functions are preferred."
This was also the only dependency on iphlpapi.