Fixes https://github.com/ziglang/zig/issues/14465
For aarch64, LLVM was crashing because Zig commands it to generate FPU code
even when there is no FPU present. This commit implements the necessary checks
to avoid this undesired situation and aarch64 can be compiled again with
no FPU.
* move `ptrBitWidth` from Arch to Target since it needs to know about the abi
* double isn't always 8 bits
* AVR uses 1-byte alignment for everything in GCC
When the element is comptime-known, we can check if it has a repeated
byte representation. In this case, `@memset` can be lowered with the
LLVM intrinsic rather than with a loop.
store:
The value to store may be undefined, in which case the destination
memory region has undefined bytes after this instruction is
evaluated. In such case ignoring this instruction is legal
lowering.
store_safe:
Same as `store`, except if the value to store is undefined, the
memory region should be filled with 0xaa bytes, and any other
safety metadata such as Valgrind integrations should be notified of
this memory region being undefined.
* Sema: upgrade operands to array pointers if possible when emitting
AIR.
* Implement safety checks for length mismatch and aliasing.
* AIR: make ptrtoint support slice operands. Implement in LLVM backend.
* C backend: implement new `@memset` semantics. `@memcpy` is not done
yet.
Now they use slices or array pointers with any element type instead of
requiring byte pointers.
This is a breaking enhancement to the language.
The safety check for overlapping pointers will be implemented in a
future commit.
closes#14040
Since the Zig language documentation claims support for `.Min` and
`.Max` in `@atomicRmw` with floats, allow in Sema and implement for both
the llvm and C backends.
* CompileStep: Avoid calling producesPdbFile() to determine whether the
option should be respected. If the user asks for it, put it on the
command line and let the Zig CLI deal with it appropriately.
* Make the namespace of `std.dwarf.Format.dwarf32` no longer have a
redundant "dwarf" in it.
* Add `zig cc` integration for `-gdwarf32` and `-gdwarf64`.
* Toss in a bonus bug fix for `-gdwarf-2`, `-gdwarf-3`, etc.
* Avoid using default init values for struct fields unnecessarily.
* Add missing cache hash addition for the new option.
This commit enables producing 64-bit DWARF format for Zig executables
that are produced through the LLVM backend. This is achieved by exposing
both command-line flags and CompileStep flags. The production of the
64-bit format only affects binaries that use the DWARF format and it is
disabled on MacOS due to it being problematic. This commit, despite
generating the interface for the Zig user to be able to tell the compile
which format is wanted, is just implemented for the LLVM backend, so
clang and the self-hosted backends will need this to be implemented in a
future commit.
This is an effort to work around #7962, since the emission of the 64-bit
format automatically produces 64-bit relocations. Further investigation
will be needed to make DWARF 32-bit format to emit bigger relocations
when needed and not make the linker angry.
Backends want to avoid emitting unused instructions which do not have
side effects: to that end, they all have `Liveness.isUnused` checks for
many instructions. However, checking this in the backends avoids a lot
of potential optimizations. For instance, if a nested field is loaded,
then the first field access would still be emitted, since its result is
used by the next access (which is then unreferenced).
To elide more instructions, Liveness can track this data instead. For
operands which do not have to be lowered (i.e. are not side effecting
and are not something special like `arg), Liveness can ignore their
operand usages, and push the unused information further up, potentially
marking many more instructions as unreferenced.
In doing this, I also uncovered a bug in the LLVM backend relating to
discarding the result of `@cVaArg`, which this change fixes. A behaviour
test has been added to cover it.
AmdgpuKernel and NvptxKernel are unified into a Kernel calling convention.
There is really no reason for these to be separate; no backend is allowed to
emit the calling convention of the other. This is in the same spirit as the
.Interrupt calling convention lowering to different LLVM calling conventions,
and opens the way for SPIR-V kernels to be exported using the Kernel calling
convention.
This lets us generate the store with knowledge of the type to be stored.
Therefore, we can avoid generating garbage Air with stores through
pointers to comptime-only types which backends cannot lower.
Closes#13410Closes#15122
* @workItemId returns the index of the work item in a work group for a
dimension.
* @workGroupId returns the index of the work group in the kernel dispatch for a
dimension.
* @workGroupSize returns the size of the work group for a dimension.
These builtins are mainly useful for GPU backends. They are currently only
implemented for the AMDGCN LLVM backend.
As bpf program has no global section for constant values (especially strings),
so use llvm's builtins (like memcpy, memset, etc) will lead to compilation failure
(something like this: A call to built-in function 'memcpy' is not supported.)
Signed-off-by: Tw <tw19881113@gmail.com>
This introduces a new builtin function that compiles down to something that results in an illegal instruction exception/interrupt.
It can be used to exit a program abnormally.
This implements the builtin for all backends.