This makes a few changes to the base64 codecs.
* The padding character is optional. The common "URL-safe" variant, in
particular, is generally not used with padding. This is also the case for
password hashes, so having this will avoid code duplication with bcrypt,
scrypt and other functions.
* The URL-safe variant is added. Instead of having individual constants
for each parameter of each variant, we are now grouping these in a
struct. So, `standard_pad_char` just becomes `standard.pad_char`.
* Types are not `snake_case`'d any more. So, `standard_encoder` becomes
`standard.Encoder`, as it is a type.
* Creating a decoder with ignored characters required the alphabet and
padding. Now, `standard.decoderWithIgnore(<ignored chars>)` returns a
decoder with the standard parameters and the set of ignored chars.
* Whatever applies to `standard.*` obviously also works with `url_safe.*`
* the `calcSize()` interface was inconsistent, taking a length in the
encoder, and a slice in the encoder. Rename the variant that takes a
slice to `calcSizeForSlice()`.
* In the decoder with ignored characters, add `calcSizeUpperBound()`,
which is more useful than the one that takes a slice in order to size
a fixed buffer before we have the data.
* Return `error.InvalidCharacter` when the input actually contains
characters that are neither padding nor part of the alphabet. If we
hit a padding issue (which includes extra bits at the end),
consistently return `error.InvalidPadding`.
* Don't keep the `char_in_alphabet` array permanently in a decoder;
it is only required for sanity checks during initialization.
* Tests are unchanged, but now cover both the standard (padded) and
the url-safe (non-padded) variants.
* Add an error set, rename `OutputTooSmallError` to `NoSpaceLeft`
to match the `hex2bin` equivalent.
This is useful for build.zig files to check in some cases, for example
to adhere to the convention of installing config to /etc instead of
/usr/etc on linux when using the /usr prefix. Perhaps std.build will
handle such common cases eventually, but that is not yet the case.
See https://eprint.iacr.org/2019/1492.pdf for justification.
8 rounds ChaCha20 provides a 2.5x speedup, and is still believed
to be safe.
Round-reduced versions are actually deployed (ex: Android filesystem
encryption), and thanks to the magic of comptime, it doesn't take much
to support them.
This also makes the ChaCha20 code more consistent with the Salsa20 code,
removing internal functions that were not part of the public API any more.
No breaking changes; the public API remains backwards compatible.
Bring this in line with how variable declarations are handled.
Open a new indentation level for the initialization expression to handle
nested expressions like blocks.
Closes#7618
The main realization here was that getting rid of the early returns
in renderWhile() and rewriting the logic into a mostly unified execution
path took things from ~200 lines to ~100 lines and improved consistency
by deduplicating code.
Also add several test cases and fix a few issues along the way:
Fixes https://github.com/ziglang/zig/issues/6114
Fixes https://github.com/ziglang/zig/issues/8022
Add failing testcase to reproduce issue 8088
Tidy up renderWhile(), factoring out renderWhilePayload()
Ensure correct newline is used before 'then' token in while/for/if
Handle indents for 'if' inside 'for' or 'while'
Stop special-casing 'if' compared to 'for' and 'while'
liburing commit: 1bafb3ce5f
As stated in the liburing commit message, this fixes a regression,
reverting code that was added specutively to avoid a syscall in some
cases.