- modify AstGen binOpExt()/assignBinOpExt() to accept generic extended payload T
- rework Sema zirSatArithmetic() to use existing sema.analyzeArithmetic() by adding an `opt_extended` parameter.
- add airSatOp() to codegen/c.zig
- add saturating functions to src/link/C/zig.h
- adds initial support for the operators +|, -|, *|, <<|, +|=, -|=, *|=, <<|=
- uses operators in addition to builtins in behavior test
- adds binOpExt() and assignBinOpExt() to AstGen.zig. these need to be audited
* AIR: add `mod` instruction for modulus division
- Implement for LLVM backend
* Sema: implement `@mod`, `@rem`, and `%`.
* Sema: fix comptime switch evaluation
* Sema: implement comptime shift left
* Sema: fix the logic inside analyzeArithmetic to handle all the
nuances between the different mathematical operations.
- Implement comptime wrapping operations
* AIR: add `get_union_tag` instruction
- implement in LLVM backend
* Sema: implement == and != for union and enum literal
- Also implement coercion from union to its own tag type
* Value: implement hashing for union values
The motivating example is this snippet:
comptime assert(@typeInfo(T) == .Float);
This was the next blocker for stage2 building compiler-rt.
Now it is switch at compile-time on an integer.
* AIR instructions struct_field_ptr and related functions now are also
emitted by the frontend for unions. Backends must inspect the type
of the pointer operand to lower the instructions correctly.
- These will be renamed to `agg_field_ptr` (short for "aggregate") in
the future.
* Introduce the new `set_union_tag` AIR instruction.
* Introduce `Module.EnumNumbered` and associated `Type` methods. This
is for enums which have no decls, but do have the possibility of
overriding the integer tag type and tag values.
* Sema: Implement support for union tag types in both the
auto-generated and explicitly-provided cases, as well as explicitly
provided enum tag values in union declarations.
* LLVM backend: implement lowering union types, union field pointer
instructions, and the new `set_union_tag` instruction.
* prepare compiler-rt to support being compiled by stage2
- put in a few minor workarounds that will be removed later, such as
using `builtin.stage2_arch` rather than `builtin.cpu.arch`.
- only try to export a few symbols for now - we'll move more symbols
over to the "working in stage2" section as they become functional
and gain test coverage.
- use `inline fn` at function declarations rather than `@call` with an
always_inline modifier at the callsites, to avoid depending on the
anonymous array literal syntax language feature (for now).
* AIR: replace floatcast instruction with fptrunc and fpext for
shortening and widening floating point values, respectively.
* Introduce a new ZIR instruction, `export_value`, which implements
`@export` for the case when the thing to be exported is a local
comptime value that points to a function.
- AstGen: fix `@export` not properly reporting ambiguous decl
references.
* Sema: handle ExportOptions linkage. The value is now available to all
backends.
- Implement setting global linkage as appropriate in the LLVM
backend. I did not yet inspect the LLVM IR, so this still needs to
be audited. There is already a pending task to make sure the alias
stuff is working as intended, and this is related.
- Sema almost handles section, just a tiny bit more code is needed in
`resolveExportOptions`.
* Sema: implement float widening and shortening for both `@floatCast`
and float coercion.
- Implement the LLVM backend code for this as well.
Previously, linker backends or machine code backends were able to hold
on to references to inside Sema's temporary arena. However there can
be large objects stored there that we want to free after machine code is
generated.
The primary change in this commit is to use a temporary arena for Sema
of function bodies that gets freed after machine code backend finishes
handling `updateFunc` (at the same time that Air and Liveness get freed).
The other changes in this commit are fixing issues that fell out from
the primary change.
* The C linker backend is rewritten to handle updateDecl and updateFunc
separately. Also, all Decl updates get access to typedefs and
fwd_decls, not only functions.
* The C linker backend is updated to the new API that does not depend
on allocateDeclIndexes and does not have to handle garbage collected
decls.
* The C linker backend uses an arena for Type/Value objects that
`typedefs` references. These can be garbage collected every so often
after flush(), however that garbage collection code is not
implemented at this time. It will be pretty simple, just allocate a
new arena, copy all the Type objects to it, update the keys of the
hash map, free the old arena.
* Sema: fix a handful of instances of not copying Type/Value objects
from the temporary arena into the appropriate Decl arena.
* Type: fix some function types not reporting hasCodeGenBits()
correctly.
There were two things to resolve here:
* Snektron's branch edited Zir printing, but in master branch
I moved the printing code from Zir.zig to print_zir.zig. So that
just had to be moved over.
* In master branch I fleshed out coerceInMemory a bit more, which
caused one of Snektron's test cases to fail, so I had to add
addrspace awareness to that. Once I did that the tests passed again.
* introduce float_to_int and int_to_float AIR instructionts and
implement for the LLVM backend and C backend.
* Sema: implement `zirIntToFloat`.
* Sema: implement `@atomicRmw` comptime evaluation
- introduce `storePtrVal` for when one needs to store a Value to a
pointer which is a Value, and assert it happens at comptime.
* Value: introduce new functionality:
- intToFloat
- numberAddWrap
- numberSubWrap
- numberMax
- numberMin
- bitwiseAnd
- bitwiseNand (not implemented yet)
- bitwiseOr
- bitwiseXor
* Sema: hook up `zirBitwise` to the new Value bitwise implementations
* Type: rename `isFloat` to `isRuntimeFloat` because it returns `false`
for `comptime_float`.
* langref: add some more "see also" links for atomics
* Add the following AIR instructions
- atomic_load
- atomic_store_unordered
- atomic_store_monotonic
- atomic_store_release
- atomic_store_seq_cst
- atomic_rmw
* Implement those AIR instructions in LLVM and C backends.
* AstGen: make the `ty` result locations for `@atomicRmw`, `@atomicLoad`,
and `@atomicStore` be `coerced_ty` to avoid unnecessary ZIR
instructions when Sema will be doing the coercions redundantly.
* Sema for `@atomicLoad` and `@atomicRmw` is done, however Sema for
`@atomicStore` is not yet implemented.
- comptime eval for `@atomicRmw` is not yet implemented.
* Sema: flesh out `coerceInMemoryAllowed` a little bit more. It can now
handle pointers.
* Implement Sema for `@cmpxchgWeak` and `@cmpxchgStrong`. Both runtime
and comptime codepaths are implement.
* Implement Codegen for LLVM backend and C backend.
* Add LazySrcLoc.node_offset_builtin_call_argX 3...5
* Sema: rework comptime control flow.
- `error.ComptimeReturn` is used to signal that a comptime function
call has returned a result (stored in the Inlining struct).
`analyzeCall` notices this and handles the result.
- The ZIR instructions `break_inline`, `block_inline`,
`condbr_inline` are now redundant and can be deleted. `break`,
`block`, and `condbr` function equivalently inside a comptime scope.
- The ZIR instructions `loop` and `repeat` also are modified to
directly perform comptime control flow inside a comptime scope,
skipping an unnecessary mechanism for analysis of runtime code.
This makes Zig perform closer to an interpreter when evaluating
comptime code.
* Sema: zirRetErrValue looks at Sema.ret_fn_ty rather than sema.func
for adding to the inferred error set. This fixes a bug for
inlined/comptime function calls.
* Implement ZIR printing for cmpxchg.
* stage1: make cmpxchg respect --single-threaded
- Our LLVM C++ API wrapper failed to expose this boolean flag before.
* Fix AIR printing for struct fields showing incorrect liveness data.
* Introduce `memoized_calls` to `Module` which stores all the comptime
function calls that are cached. It is keyed on the `*Fn` and the
comptime arguments, but it does not yet properly detect comptime function
pointers and avoid memoizing in this case. So it will have false
positives for when a comptime function call mutates data through a
pointer parameter.
* Sema: Add a new helper function: `resolveConstMaybeUndefVal`
* Value: add `enumToInt` method and use it in `zirEnumToInt`. It is
also used by the hashing function.
* Value: fix representation of optionals to match error unions.
Previously it would not handle nested optionals correctly. Now it
matches the memory layout of error unions and supports nested
optionals properly. This required changes in all the backends for
generating optional constants.
* TypedValue gains `eql` and `hash` methods.
* Value: Implement hashing for floats, optionals, and enums.
Additionally, the zig type tag is added to the hash, where it was not
previously, so that values of differing types will get different
hashes.
The big change in this commit is making `semaDecl` resolve the fields if
the Decl ends up being a struct or union. It needs to do this while
the `Sema` is still in scope, because it will have the resolved AIR
instructions that the field type expressions possibly reference. We do
this after the decl is populated and set to `complete` so that a `Decl`
may reference itself.
Everything else is fixes and improvements to make the test suite pass
again after making this change.
* New AIR instruction: `ptr_elem_ptr`
- Implemented for LLVM backend
* New Type tag: `type_info` which represents `std.builtin.TypeInfo`. It
is used by AstGen for the operand type of `@Type`.
* ZIR instruction `set_float_mode` uses `coerced_ty` to avoid
superfluous `as` instruction on operand.
* ZIR instruction `Type` uses `coerced_ty` to properly handle result
location type of operand.
* Fix two instances of `enum_nonexhaustive` Value Tag not handled
properly - it should generally be handled the same as `enum_full`.
* Fix struct and union field resolution not copying Type and Value
objects into its Decl arena.
* Fix enum tag value resolution discarding the ZIR=>AIR instruction map
for the child Sema, when they still needed to be accessed.
* Fix `zirResolveInferredAlloc` use-after-free in the AIR instructions
data array.
* Fix `elemPtrArray` not respecting const/mutable attribute of pointer
in the result type.
* Fix LLVM backend crashing when `updateDeclExports` is called before
`updateDecl`/`updateFunc` (which is, according to the API, perfectly
legal for the frontend to do).
* Fix LLVM backend handling element pointer of pointer-to-array. It
needed another index in the GEP otherwise LLVM saw the wrong type.
* Fix LLVM test cases not returning 0 from main, causing test failures.
Fixes a regression introduced in
6a5094872f10acc629543cc7f10533b438d0283a.
* Implement comptime shift-right.
* Implement `@Type` for integers and `@TypeInfo` for integers.
* Implement union initialization syntax.
* Implement `zirFieldType` for unions.
* Implement `elemPtrArray` for a runtime-known operand.
* Make `zirLog2IntType` support RHS of shift being `comptime_int`. In
this case it returns `comptime_int`.
The motivating test case for this commit was originally:
```zig
test "example" {
var l: List(10) = undefined;
l.array[1] = 1;
}
fn List(comptime L: usize) type {
var T = u8;
return struct {
array: [L]T,
};
}
```
However I changed it to:
```zig
test "example" {
var l: List = undefined;
l.array[1] = 1;
}
const List = blk: {
const T = [10]u8;
break :blk struct {
array: T,
};
};
```
Which ended up being a similar, smaller problem. The former test case
will require a similar solution in the implementation of comptime
function calls - checking if the result of the function call is a struct
or union, and using the child `Sema` before it is destroyed to resolve
the fields.
* Value: rename `error_union` to `eu_payload` and clarify the intended
usage in the doc comments. The way error unions is represented with
Value is fixed to not have ambiguous values.
* Fix codegen for error union constants in all the backends.
* Implement the AIR instructions having to do with error unions in the
LLVM backend.
* New AIR instructions: ptr_add, ptr_sub, ptr_elem_val, ptr_ptr_elem_val
- See the doc comments for details.
* Sema: implement runtime pointer arithmetic.
* Sema: implement elem_val for many-pointers.
* Sema: support coercion from `*[N:s]T` to `[*]T`.
* Type: isIndexable handles many-pointers.
After this change, the frontend and backend cooperate to keep track of
which Decls are actually emitted into the machine code. When any backend
sees a `decl_ref` Value, it must mark the corresponding Decl `alive`
field to true.
This prevents unused comptime data from spilling into the output object
files. For example, if you do an `inline for` loop, previously, any
intermediate value calculations would have gone into the object file.
Now they are garbage collected immediately after the owner Decl has its
machine code generated.
In the frontend, when it is time to send a Decl to the linker, if it has
not been marked "alive" then it is deleted instead.
Additional improvements:
* Resolve type ABI layouts after successful semantic analysis of a
Decl. This is needed so that the backend has access to struct fields.
* Sema: fix incorrect logic in resolveMaybeUndefVal. It should return
"not comptime known" instead of a compile error for global variables.
* `Value.pointerDeref` now returns `null` in the case that the pointer
deref cannot happen at compile-time. This is true for global
variables, for example. Another example is if a comptime known
pointer has a hard coded address value.
* Binary arithmetic sets the requireRuntimeBlock source location to the
lhs_src or rhs_src as appropriate instead of on the operator node.
* Fix LLVM codegen for slice_elem_val which had the wrong logic for
when the operand was not a pointer.
As noted in the comment in the implementation of deleteUnusedDecl, a
future improvement will be to rework the frontend/linker interface to
remove the frontend's responsibility of calling allocateDeclIndexes.
I discovered some issues with the plan9 linker backend that are related
to this, and worked around them for now.
* AIR no longer has a `variables` array. Instead of the `varptr`
instruction, Sema emits a constant with a `decl_ref`.
* AIR no longer has a `ref` instruction. There is no longer any
instruction that takes a value and returns a pointer to it. If this
is desired, Sema must either create an anynomous Decl and return a
constant `decl_ref`, or in the case of a runtime value, emit an
`alloc` instruction, `store` the value to it, and then return the
`alloc`.
* The `ref_val` Value Tag is eliminated. `decl_ref` should be used
instead. Also added is `eu_payload_ptr` which points to the payload
of an error union, given an error union pointer.
In general, Sema should avoid calling `analyzeRef` if it can be helped.
For example in the case of field_val and elem_val, there should never be
a reason to create a temporary (alloc or decl). Recent previous commits
made progress along that front.
There is a new abstraction in Sema, which looks like this:
var anon_decl = try block.startAnonDecl();
defer anon_decl.deinit();
// here 'anon_decl.arena()` may be used
const decl = try anon_decl.finish(ty, val);
// decl is typically now used with `decl_ref`.
This pattern is used to upgrade `ref_val` usages to `decl_ref` usages.
Additional improvements:
* Sema: fix source location resolution for calling convention
expression.
* Sema: properly report "unable to resolve comptime value" for loads of
global variables. There is now a set of functions which can be
called if the callee wants to obtain the Value even if the tag is
`variable` (indicating comptime-known address but runtime-known value).
* Sema: `coerce` resolves builtin types before checking equality.
* Sema: fix `u1_type` missing from `addType`, making this type have a
slightly more efficient representation in AIR.
* LLVM backend: fix `genTypedValue` for tags `decl_ref` and `variable`
to properly do an LLVMConstBitCast.
* Remove unused parameter from `Value.toEnum`.
After this commit, some test cases are no longer passing. This is due to
the more principled approach to comptime references causing more
anonymous decls to get sent to the linker for codegen. However, in all
these cases the decls are not actually referenced by the runtime machine
code. A future commit in this branch will implement garbage collection
of decls so that unused decls do not get sent to the linker for codegen.
This will make the tests go back to passing.
* Add AIR instruction: struct_field_val
- This is part of an effort to eliminate the AIR instruction `ref`.
- It's implemented for C backend and LLVM backend so far.
* Rename `resolvePossiblyUndefinedValue` to `resolveMaybeUndefVal` just
to save some columns on long lines.
* Sema: add `fieldVal` alongside `fieldPtr` (renamed from
`namedFieldPtr`). This is part of an effort to eliminate the AIR
instruction `ref`. The idea is to avoid unnecessary loads, stores,
stack usage, and IR instructions, by paying a DRY cost.
LLVM backend improvements:
* internal linkage vs exported linkage is implemented, along with
aliases. There is an issue with incremental updates due to missing
LLVM API for deleting aliases; see the relevant comment in this commit.
- `updateDeclExports` is hooked up to the LLVM backend now.
* Fix usage of `Type.tag() == .noreturn` rather than calling `isNoReturn()`.
* Properly mark global variables as mutable/constant.
* Fix llvm type generation of function pointers
* Fix codegen for calls of function pointers
* Implement llvm type generation of error unions and error sets.
* Implement AIR instructions: addwrap, subwrap, mul, mulwrap, div,
bit_and, bool_and, bit_or, bool_or, xor, struct_field_ptr,
struct_field_val, unwrap_errunion_err, add for floats, sub for
floats.
After this commit, `zig test` on a file with `test "example" {}`
correctly generates and executes a test binary. However the
`test_functions` slice is undefined and just happens to be going into
the .bss section, causing the length to be 0. The next step towards
`zig test` will be replacing the `test_functions` Decl Value with the
set of test function pointers, before it is sent to linker/codegen.
* There is now a main_pkg in addition to root_pkg. They are usually the
same. When using `zig test`, main_pkg is the user's source file and
root_pkg has the test runner.
* scanDecl no longer looks for test decls outside the package being
tested. honoring `--test-filter` is still TODO.
* test runner main function has a void return value rather than
`anyerror!void`
* Sema is improved to generate better AIR for for loops on slices.
* Sema: fix incorrect capacity calculation in zirBoolBr
* Sema: add compile errors for trying to use slice fields as an lvalue.
* Sema: fix type coercion for error unions
* Sema: fix analyzeVarRef generating garbage AIR
* C codegen: fix renderValue for error unions with 0 bit payload
* C codegen: implement function pointer calls
* CLI: fix usage text
Adds 4 new AIR instructions:
* slice_len, slice_ptr: to get the ptr and len fields of a slice.
* slice_elem_val, ptr_slice_elem_val: to get the element value of
a slice, and a pointer to a slice.
AstGen gains a new functionality:
* One of the unused flags of struct decls is now used to indicate
structs that are known to have non-zero size based on the AST alone.
Now the branch is compiling again, provided that one uses
`-Dskip-non-native`, but many code paths are disabled. The code paths
can now be re-enabled one at a time and updated to conform to the new
AIR memory layout.
to the link infrastructure, instead of being stored with Module.Fn. This
moves towards a strategy to make more efficient use of memory by not
storing Air or Liveness data in the Fn struct, but computing it on
demand, immediately sending it to the backend, and then immediately
freeing it.
Backends which want to defer codegen until flush() such as SPIR-V
must move the Air/Liveness data upon `updateFunc` being called and keep
track of that data in the backend implementation itself.
This commit changes the AIR file and the documentation of the memory
layout. The actual work of modifying the surrounding code (in Sema and
codegen) is not yet done.
* less branching by passing parameters in the main op code switch.
* properly pass the target when asking the type system for int info.
* handle u8, i16, etc when it is represented using
int_unsigned/int_signed tag.
* compile error instead of assertion failure for unimplemented cases
(greater than 64 bits integer).
* control flow cleanups
* zig.h: expand macros into inline functions
* reduce the complexity of the test case by making it one test case
that calls multiple functions. Also fix the problem of c_int max
value mismatch between host and target.
* Inferred error sets are stored in the return Type of the function,
owned by the Module.Fn. So it cleans up that memory in deinit().
* Sema: update the inferred error set in zirRetErrValue
- Update relevant code in wrapErrorUnion
* C backend: improve some some instructions to take advantage of
liveness analysis to avoid being emitted when unused.
* C backend: when an error union has a payload type with no runtime
bits, emit the error union as the same type as the error set.
AstGen had the then-else logic backwards for if expressions
on error unions. This commit fixes it.
Turns out AstGen only really needs `is_non_null` and `is_non_err`,
and does not need the `is_null` or `is_err` variants. So I removed the
`is_null{,_ptr}` and `is_err{,_ptr}` ZIR instructions (-4) and
added `is_non_err`, `is_non_err_ptr` ZIR instructions (+2) for
a total of (-2) ZIR instructions, giving us a tiny bit more headroom
within the 256 tag limit. This required swapping the order of
then/else blocks in a handful of cases, but ultimately means the
ZIR will be in the same as source order, which is convenient
when debugging.
AIR code on the other hand, gains the `is_non_err` and `is_non_err_ptr`
instructions.
Sema: fix logic in zirErrUnionCode and zirErrUnionCodePtr returning the
wrong result type.
* ZIR: add two instructions:
- ret_err_value_code
- ret_err_value
* AstGen: add countDefers and utilize it to emit more efficient ZIR for
return expressions in the presence of defers.
* AstGen: implement |err| payloads for `errdefer` syntax.
- There is not an "unused capture" error for it yet.
* AstGen: `return error.Foo` syntax gets a hot path in return
expressions, using the new ZIR instructions. This also is part of
implementing inferred error sets, since we need to tell Sema to add
an error value to the inferred error set before it gets coerced.
* Sema: implement `@setCold`.
- Implement `@setCold` support for C backend.
* `@panic` and regular safety panics such as `unreachable` now properly
invoke `std.builtin.panic`.
* C backend: improve pointer and function value rendering.
* C linker: fix redundant typedefs.
* Add Type.error_set_inferred.
* Fix Value.format for enum_literal, enum_field_index, bytes.
* Remove the C backend test that checks for identical text
I measured a 14% reduction in Total ZIR Bytes from master branch
for std/os.zig.
We can just use bitcast instead of error_to_int, int_to_error since
errorToInt and intToError do not actually do anything, just change types.
This allows us to remove 2 air ops that were the exact same as bitcast
- hash/eql functions moved into a Context object
- *Context functions pass an explicit context
- *Adapted functions pass specialized keys and contexts
- new getPtr() function returns a pointer to value
- remove functions renamed to fetchRemove
- new remove functions return bool
- removeAssertDiscard deleted, use assert(remove(...)) instead
- Keys and values are stored in separate arrays
- Entry is now {*K, *V}, the new KV is {K, V}
- BufSet/BufMap functions renamed to match other set/map types
- fixed iterating-while-modifying bug in src/link/C.zig
We've settled on the nomenclature for the artifacts the compiler
pipeline produces:
1. Tokens
2. AST (Abstract Syntax Tree)
3. ZIR (Zig Intermediate Representation)
4. AIR (Analyzed Intermediate Representation)
5. Machine Code
Renaming `ir` identifiers to `air` will come with the inevitable
air-memory-layout branch that I plan to start after the 0.8.0 release.
Decl objects need to know whether they are the owner of the Type/Value
associated with them, in order to decide whether to destroy the
associated Namespace, Fn, or Var when cleaning up.