This change is seemingly insignificant but I actually agonized over this
for three days. Some other things I considered:
* (status quo in master branch) make Compile step creation functions
accept a Target.Query and delete the ResolvedTarget struct.
- downside: redundantly resolve target queries many times
* same as before but additionally add a hash map to cache target query
resolutions.
- downside: now there is a hash map that doesn't actually need to
exist, just to make the API more ergonomic.
* add is_native_os and is_native_abi fields to std.Target and use it
directly as the result of resolving a target query.
- downside: they really don't belong there. They would be available
as comptime booleans via `@import("builtin")` but they should not
be exposed that way.
With this change the downsides are:
* the option name of addExecutable and friends is `target` instead of
`resolved_target` matching the type name.
- upside: this does not break compatibility with existing build
scripts
* you likely end up seeing `target.result.cpu.arch` rather than
`target.cpu.arch`.
- upside: this is an improvement over `target.target.cpu.arch` which
it was before this commit.
- downside: `b.host.target` is now `b.host.result`.
Introduce the concept of "target query" and "resolved target". A target
query is what the user specifies, with some things left to default. A
resolved target has the default things discovered and populated.
In the future, std.zig.CrossTarget will be rename to std.Target.Query.
Introduces `std.Build.resolveTargetQuery` to get from one to the other.
The concept of `main_mod_path` is gone, no longer supported. You have to
put the root source file at the module root now.
* remove deprecated API
* update build.zig for the breaking API changes in this branch
* move std.Build.Step.Compile.BuildId to std.zig.BuildId
* add more options to std.Build.ExecutableOptions, std.Build.ObjectOptions,
std.Build.SharedLibraryOptions, std.Build.StaticLibraryOptions, and
std.Build.TestOptions.
* remove `std.Build.constructCMacro`. There is no use for this API.
* deprecate `std.Build.Step.Compile.defineCMacro`. Instead,
`std.Build.Module.addCMacro` is provided.
- remove `std.Build.Step.Compile.defineCMacroRaw`.
* deprecate `std.Build.Step.Compile.linkFrameworkNeeded`
- use `std.Build.Module.linkFramework`
* deprecate `std.Build.Step.Compile.linkFrameworkWeak`
- use `std.Build.Module.linkFramework`
* move more logic into `std.Build.Module`
* allow `target` and `optimize` to be `null` when creating a Module.
Along with other fields, those unspecified options will be inherited
from parent `Module` when inserted into an import table.
* the `target` field of `addExecutable` is now required. pass `b.host`
to get the host target.
This moves many settings from `std.Build.Step.Compile` and into
`std.Build.Module`, and then makes them transitive.
In other words, it adds support for exposing Zig modules in packages,
which are configured in various ways, such as depending on other link
objects, include paths, or even a different optimization mode.
Now, transitive dependencies will be included in the compilation, so you
can, for example, make a Zig module depend on some C source code, and
expose that Zig module in a package.
Currently, the compiler frontend autogenerates only one
`@import("builtin")` module for the entire compilation, however, a
future enhancement will be to make it honor the differences in modules,
so that modules can be compiled with different optimization modes, code
model, valgrind integration, or even target CPU feature set.
closes#14719
This duplicates the source file string (as is done in other places such
as `addAssemblyFile()`) in order to prevent a segfault when the supplied
string is freed by the caller. This is still seen when the caller makes
use of a defer statement.
Justification: exec, execv etc are unix concepts and portable version
should be called differently.
Do no touch non-Zig code. Adjust error names as well, if associated.
Closes#5853.
An embedded manifest file is really just XML data embedded as a RT_MANIFEST resource (ID = 24). Typically, the Windows-only 'Manifest Tool' (`mt.exe`) is used to embed manifest files, and `mt.exe` also seems to perform some transformation of the manifest data before embedding, but in testing it doesn't seem like the transformations are necessary to get the intended result.
So, to handle embedding manifest files, Zig now takes the following approach:
- Generate a .rc file with the contents `1 24 "path-to-manifest.manifest"`
- Compile that generated .rc file into a .res file
- Link the .res file into the final binary
This effectively achieves the same thing as `mt.exe` minus the validation/transformations of the XML data that it performs.
How this is used:
On the command line:
```
zig build-exe main.zig main.manifest
```
(on the command line, specifying a .manifest file when the target object format is not COFF is an error)
or in build.zig:
```
const exe = b.addExecutable(.{
.name = "manifest-test",
.root_source_file = .{ .path = "main.zig" },
.target = target,
.optimize = optimize,
.win32_manifest = .{ .path = "main.manifest" },
});
```
(in build.zig, the manifest file is ignored if the target object format is not COFF)
Note: Currently, only one manifest file can be specified per compilation. This is because the ID of the manifest resource is currently always 1. Specifying multiple manifests could be supported if a way for the user to specify an ID for each manifest is added (manifest IDs must be a u16).
Closes#17406
options
* start renaming "package" to "module" (see #14307)
- build system gains `main_mod_path` and `main_pkg_path` is still
there but it is deprecated.
* eliminate the object-oriented memory management style of what was
previously `*Package`. Now it is `*Package.Module` and all pointers
point to externally managed memory.
* fixes to get the new Fetch.zig code working. The previous commit was
work-in-progress. There are still two commented out code paths, the
one that leads to `Compilation.create` and the one for `zig build`
that fetches the entire dependency tree and creates the required
modules for the build runner.
The new `@depedencies` module contains generated code like the
following (where strings like "abc123" represent hashes):
```zig
pub const root_deps = [_]struct { []const u8, []const u8 }{
.{ "foo", "abc123" },
};
pub const packages = struct {
pub const abc123 = struct {
pub const build_root = "/home/mlugg/.cache/zig/blah/abc123";
pub const build_zig = @import("abc123");
pub const deps = [_]struct { []const u8, []const u8 }{
.{ "bar", "abc123" },
.{ "name", "ghi789" },
};
};
};
```
Each package contains a build root string, the build.zig import, and a
mapping from dependency names to package hashes. There is also such a
mapping for the root package dependencies.
In theory, we could now remove the `dep_prefix` field from `std.Build`,
since its main purpose is now handled differently. I believe this is a
desirable goal, as it doesn't really make sense to assign a single FQN
to any package (because it may appear in many different places in the
package hierarchy). This commit does not remove that field, as it's used
non-trivially in a few places in the build runner and compiler tests:
this will be a future enhancement.
Resolves: #16354Resolves: #17135
When using `std.Build.dependency` with target options, dependencies
would sometimes get targets which are equivalent but have distinct
names, e.g. `native` vs `native-native`. This is a somewhat broad issue,
and it's unclear how to fix it more generally - perhaps we should
special-case CrossTarget in options passing, or maybe targets should
have a canonical name which we guarantee to use everywhere aside from
raw user input.
However, this commit fixes the most egregious issue, which was an active
blocker to using the package manager for some users. This was caused by
the CPU changing from `native` to a specific descriptor (e.g.
`skylake+sgx`), which then changed the behavior of `zigTriple`.
Resolves: #16856
* introduce LazyPath.cwd_relative variant and use it for --zig-lib-dir. closes#12685
* move overrideZigLibDir and setMainPkgPath to options fields set once
and then never mutated.
* avoid introducing Build/util.zig
* use doc comments for deprecation notices so that they show up in
generated documentation.
* introduce InstallArtifact.Options, accept it as a parameter to
addInstallArtifact, and move override_dest_dir into it. Instead of
configuring the installation via Compile step, configure the
installation via the InstallArtifact step. In retrospect this is
obvious.
* remove calls to pushInstalledFile in InstallArtifact. See #14943
* rewrite InstallArtifact to not incorrectly observe whether a Compile
step has any generated outputs. InstallArtifact is meant to trigger
output generation.
* fix child process evaluation code handling of `-fno-emit-bin`.
* don't store out_h_filename, out_ll_filename, etc., pointlessly. these
are all just simple extensions appended to the root name.
* make emit_directory optional. It's possible to have nothing outputted,
for example, if you're just type-checking.
* avoid passing -femit-foo/-fno-emit-foo when it is the default
* rename ConfigHeader.getTemplate to getOutput
* deprecate addOptionArtifact
* update the random number seed of Options step caching.
* avoid using `inline for` pointlessly
* avoid using `override_Dest_dir` pointlessly
* avoid emitting an executable pointlessly in test cases
Removes forceBuild and forceEmit. Let's consider these additions separately.
Nearly all of the usage sites were suspicious.
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:
* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
Also get rid of the TTY wrapper struct, which was exlusively used as a
namespace - this is done by the tty.zig root struct now.
detectTTYConfig has been renamed to just detectConfig, which is enough
given the new namespace. Additionally, a doc comment had been added.
* build.zig: the result of b.option() can be assigned directly in many
cases thanks to the return type being an optional
* std.Build: make the build system aware of the
std.Build.Step.Compile.BuildId type when used as an option.
- remove extraneous newlines in error logs
* simplify caching logic
* simplify hexstring parsing tests and use a doc test
* simplify hashing logic. don't use an optional when the `none` tag
already provides this meaning.
* CLI: fix incorrect linker arg parsing
The CI now runs C backend tests in addition to compiling them. It uses
-std=c99 -pedantic -Werror in order to catch non-conformant C code.
This necessitated disabling a test case that caused a C compile error,
in addition to disabling a handful of warnings that are already being
triggered by Zig's C backend output for the behavior tests.
The upshot is that I was able to, very cleanly, integrate the C backend
tests into the build system, so that it communicates via the test runner
protocol along with all the other behavior tests.
* remove setName, setFilter, and setTestRunner. Please set these
options directly when creating the CompileStep.
* removed unused field
* remove computeOutFileNames and inline the logic, making clear the
goal of avoiding state mutations after the build step is created.
* use the same hash function as the rest of the steps
* fix race condition due to a macOS oddity.
* fix race condition due to file truncation (rename into place instead)
* integrate with marking Step.result_cached. check if the file already
exists with fs.access before doing anything else.
* use a directory so that the file basename can be "options.zig"
instead of a hash digest.
* better error reporting in case of file system failures.
This is useful for tests that want to `execve` zig directly. The string
is already null-terminated, so this will just expose it as such,
removing an extra allocation from the test.
Will be used in #14462