* ELF v1 on powerpc64 is only barely kept on life support in a couple of Linux
distros. I don't anticipate that this will last much longer.
* Most of the Linux world has moved to powerpc64le which requires ELF v2.
* Some Linux distros have even started supporting powerpc64 with ELF v2.
* The BSD world has long since moved to ELF v2.
* We have no actual linking support for ELF v1.
* ELF v1 had confused DWARF register mappings which is becoming a problem in
our DWARF code in std.debug.
It's clear that ELF v1 is on its way out, and we never fully supported it
anyway. So let's not waste any time or energy on it going forward.
closes#5927
The amount of cross compilation required for these tests was too time-consuming
for how much value they added. test-stack-traces now cover these well enough,
especially as we add more exotic machines to the CI fleet to run native tests.
There were only a few dozen lines of common logic, and they frankly
introduced more complexity than they eliminated. Instead, let's accept
that the implementations of `SelfInfo` are all pretty different and want
to track different state. This probably fixes some synchronization and
memory bugs by simplifying a bunch of stuff. It also improves the DWARF
unwind cache, making it around twice as fast in a debug build with the
self-hosted x86_64 backend, because we no longer have to redundantly go
through the hashmap lookup logic to find the module. Unwinding on
Windows will also see a slight performance boost from this change,
because `RtlVirtualUnwind` does not need to know the module whatsoever,
so the old `SelfInfo` implementation was doing redundant work. Lastly,
this makes it even easier to implement `SelfInfo` on freestanding
targets; there is no longer a need to emulate a real module system,
since the user controls the whole implementation!
There are various other small refactors here in the `SelfInfo`
implementations as well as in the DWARF unwinding logic. This change
turned out to make a lot of stuff simpler!
...and just deal with signal handlers by adding 1 to create a fake
"return address". The system I tried out where the addresses returned by
`StackIterator` were pre-subtracted didn't play nicely with error
traces, which in hindsight, makes perfect sense. This definition also
removes some ugly off-by-one issues in matching `first_address`, so I do
think this is a better approach.