LLD expects the library file name (minus extension) to be exactly libmingw32. By
calling it mingw32 previously, we prevented it from being detected as being in
LLD's list of libraries that are excluded from the MinGW-specific auto-export
mechanism.
b9d27ac252/lld/COFF/MinGW.cpp (L30-L56)
As a result, a DLL built for *-windows-gnu with Zig would export a bunch of
internal MinGW symbols. This sometimes worked out fine, but it could break at
link or run time when linking an EXE with a DLL, where both are targeting
*-windows-gnu and thus linking separate copies of mingw32.lib. In #23204, this
manifested as the linker getting confused about _gnu_exception_handler() because
it was incorrectly exported by the DLL while also being defined in the
mingw32.lib that was being linked into the EXE.
Closes#23204.
On updates with failed files, we should refrain from doing any semantic
analysis, or even touching codegen/link. That way, incremental
compilation state is untouched for when the user fixes the AstGen
errors.
Resolves: #23205
Clang's integrated Arm assembler doesn't understand -mabi yet, so this results
in "unused command line argument" warnings when building musl code and glibc
stubs, for example.
Windows is a ridiculous operating system designed by toddlers, and so
requires us to close all file handles in the `tmp/xxxxxxx` cache dir
before renaming it into `o/xxxxxxx`. We have a hack in place to handle
this for the main output file, but the MachO linker also outputs a file
with debug symbols, and we weren't closing it! This led to a fuckton of
CI failures when we enabled `.whole` cache mode by default for
self-hosted backends.
thanks jacob for figuring this out while i sat there
This reverts commit dea72d15da4fba909dc3ccb2e9dc5286372ac023, reversing
changes made to ab381933c87bcc744058d25a876cfdc0d23fc674.
The changeset does not work as advertised and does not have sufficient
test coverage.
Reopens#22822
Problem here is if zig is asked to create multiple static libraries, it
will build the runtime multiple times and then they will conflict.
Instead we want to build the runtime exactly once.
Unlike `compiler-rt`, `ubsan` uses the standard library quite a lot.
Using a similar approach to how `compiler-rt` is handled today, where it's
compiled into its own object and then linked would be sub-optimal as we'd
be introducing a lot of code bloat.
This approach always "imports" `ubsan` if the ZCU, if it exists. If it doesn't
such as the case where we're compiling only C code, then we have no choice other
than to compile it down to an object and link. There's still a tiny optimization
we can do in that case, which is when compiling to a static library, there's no
need to construct an archive with a single object. We'd only go back and parse out
ubsan from the archive later in the pipeline. So we compile it to an object instead
and link that to the static library.
TLDR;
- `zig build-exe foo.c` -> build `libubsan.a` and links
- `zig build-obj foo.c` -> doesn't build anything, just emits references to ubsan runtime
- `zig build-lib foo.c -static` -> build `ubsan.o` and link it
- `zig build-exe foo.zig bar.c` -> import `ubsan-rt` into the ZCU
- `zig build-obj foo.zig bar.c` -> import `ubsan-rt` into the ZCU
- `zig build-lib foo.zig bar.c` -> import `ubsan-rt` into the ZCU
This can also be extended to ELF later as it means roughly the same thing there.
This addresses the main issue in #21721 but as I don't have a macOS machine to
do further testing on, I can't confirm whether zig cc is able to pass the entire
cgo test suite after this commit. It can, however, cross-compile a basic program
that uses cgo to x86_64-macos-none which previously failed due to lack of -x
support. Unlike previously, the resulting symbol table does not contain local
symbols (such as C static functions).
I believe this satisfies the related donor bounty: https://ziglang.org/news/second-donor-bounty
- allow `-fsanitize-coverage-trace-pc-guard` to be used on its own without enabling the fuzzer.
(note that previouly, while the flag was only active when fuzzing, the fuzzer itself doesn't use it, and the code will not link as is.)
- add stub functions in the fuzzer to link with instrumented C code (previously fuzzed tests failed to link if they were calling into C):
while the zig compile unit uses a custom `EmitOptions.Coverage` with features disabled,
the C code is built calling into the clang driver with "-fsanitize=fuzzer-no-link" that automatically enables the default features.
(see de06978ebc/clang/lib/Driver/SanitizerArgs.cpp (L587))
- emit `-fsanitize-coverage=trace-pc-guard` instead of `-Xclang -fsanitize-coverage-trace-pc-guard` so that edge coverrage is enabled by clang driver. (previously, it was enabled only because the fuzzer was)
Functions like isMinGW() and isGnuLibC() have a good reason to exist: They look
at multiple components of the target. But functions like isWasm(), isDarwin(),
isGnu(), etc only exist to save 4-8 characters. I don't think this is a good
enough reason to keep them, especially given that:
* It's not immediately obvious to a reader whether target.isDarwin() means the
same thing as target.os.tag.isDarwin() precisely because isMinGW() and similar
functions *do* look at multiple components.
* It's not clear where we would draw the line. The logical conclusion before
this commit would be to also wrap Arch.isX86(), Os.Tag.isSolarish(),
Abi.isOpenHarmony(), etc... this obviously quickly gets out of hand.
* It's nice to just have a single correct way of doing something.
Clearing the analysis roots was very clever and all, but not actually
valid. We need to avoid *any* reference to the analysis errors if there
were any fatal files, and that includes sorting the errors!
Resolves: #22774
The changes from a few commits earlier, where semantic analysis no
longer occurs if any Zig files failed to lower to ZIR, mean `file`
dependencies are no longer necessary! However, we now need them for ZON
files, to be invalidated whenever a ZON file changes.
This came with a big cleanup to `Zcu.PerThread.updateFile` (formerly
`astGenFile`).
Also, change how the cache manifest works for files in the import table.
Instead of being added to the manifest when we call `semaFile` on them,
we iterate the import table after running the AstGen workers and add all
the files to the cache manifest then.
The downside is that this is a bit more eager to include files in the
manifest; in particular, files which are imported but not actually
referenced are now included in analysis. So, for instance, modifying any
standard library file will invalidate all Zig compilations using that
standard library, even if they don't use that file.
The original motivation here was simply that the old logic in `semaFile`
didn't translate nicely to ZON. However, it turns out to actually be
necessary for correctness. Because `@import("foo.zig")` is an
AstGen-level error if `foo.zig` does not exist, we need to invalidate
the cache when an imported but unreferenced file is removed to make sure
this error is triggered when it needs to be.
Resolves: #22746
This is mainly in preparation for integrating ZonGen into the pipeline
properly, although these names are better because `astGenFile` isn't
*necessarily* running AstGen; it may determine that the current ZIR is
up-to-date, or load cached ZIR.
Instead, `source`, `tree`, and `zir` should all be optional. This is
precisely what we're actually trying to model here; and `File` isn't
optimized for memory consumption or serializability anyway, so it's fine
to use a couple of extra bytes on actual optionals here.
This commit allows using ZON (Zig Object Notation) in a few ways.
* `@import` can be used to load ZON at comptime and convert it to a
normal Zig value. In this case, `@import` must have a result type.
* `std.zon.parse` can be used to parse ZON at runtime, akin to the
parsing logic in `std.json`.
* `std.zon.stringify` can be used to convert arbitrary data structures
to ZON at runtime, again akin to `std.json`.
* compiler-rt and mingw32 have both run into LLD bugs, and LLVM disables LTO for
its compiler-rt, so disable LTO for these.
* While we haven't run into any bugs in it, LLVM disables LTO for its libtsan,
so follow suit just to be safe.
* Allow LTO for libfuzzer as LLVM does.
Uses of `@embedFile` register dependencies on the corresponding
`Zcu.EmbedFile`. At the start of every update, we iterate all embedded
files and update them if necessary, and invalidate the dependencies if
they changed.
In order to properly integrate with the lazy analysis model, failed
embed files are now reported by the `AnalUnit` which actually used
`@embedFile`; the filesystem error is stored in the `Zcu.EmbedFile`.
An incremental test is added covering incremental updates to embedded
files, and I have verified locally that dependency invalidation is
working correctly.
and remove faulty assertion. When a prelink task fails, the
completed_prelink_tasks counter will not decrement.
A future improvement will be needed to make the pipeline fully robust
and handle failed prelink tasks, followed by updates in which those
tasks succeed, and compilation proceeds like normal.
Currently if a prelink task fails, the Compilation will be left in a
state unrecoverable by an incremental update.
This moves the default value logic to Package.Module.create() instead and makes
it so that Compilation.Config.any_unwind_tables is computed similarly to
any_sanitize_thread, any_fuzz, etc. It turns out that for any_unwind_tables, we
only actually care if unwind tables are enabled at all, not at what level.
See: https://github.com/WebAssembly/tool-conventions/pull/235
This is not *quite* using the same features as the spec'd lime1 model because
LLVM 19 doesn't have the level of feature granularity that we need for that.
This will be fixed once we upgrade to LLVM 20.
Part of #21818.
Turns out that even modern Debian aarch64 glibc libc_nonshared.a has
references to _init, meaning that the previous commit caused a
regression when trying to build any -lc executable on that target.
This commit backs out the changes to LibCInstallation.
There is still a fork in the road coming up when the self-hosted ELF
linker becomes load bearing on that target.
crti.o/crtn.o is a legacy strategy for calling constructor functions
upon object loading that has been superseded by the
init_array/fini_array mechanism.
Zig code depends on neither, since the language intentionally has no way
to initialize data at runtime, but alas the Zig linker still must
support this feature since popular languages depend on it.
Anyway, the way it works is that crti.o has the machine code prelude of
two functions called _init and _fini, each in their own section with the
respective name. crtn.o has the machine code instructions comprising the
exitlude for each function. In between, objects use the .init and .fini
link section to populate the function body.
This function is then expected to be called upon object initialization
and deinitialization.
This mechanism is depended on by libc, for example musl and glibc, but
only for older ISAs. By the time the libcs gained support for newer
ISAs, they had moved on to the init_array/fini_array mechanism instead.
For the Zig linker, we are trying to move the linker towards
order-independent objects which is incompatible with the legacy
crti/crtn mechanism.
Therefore, this commit drops support entirely for crti/crtn mechanism,
which is necessary since the other commits in this branch make it
nondeterministic in which order the libc objects and the other link
inputs are sent to the linker.
The linker is still expected to produce a deterministic output, however,
by ignoring object input order for the purposes of symbol resolution.