Arrays are currently always passed by reference, this means that we
always keep the value in linear memory and never load it to Wasm's
stack. Scalar values however do get lowered to Wasm's stack.
This means when bitcasting from an array to a scalar value, we must
load the memory of the array as such scalar type. To bitcast
a scalar type to an array, we allocate a new temporary in the
linear data segment, and then store the scalar value there.
Use inline to vastly simplify the exposed API. This allows a
comptime-known endian parameter to be propogated, making extra functions
for a specific endianness completely unnecessary.
* 128-bit integer multiplication with overflow
* more instruction encodings used by std inline asm
* implement the `try_ptr` air instruction
* follow correct stack frame abi
* enable full panic handler
* enable stack traces
The main goal of this commit is to remove the `runtime_value` field from
`InternPool.Key` (and its associated representation), but there are a
few dominos. Specifically, this mostly eliminates the "maybe runtime"
concept from value resolution in Sema: so some resolution functions like
`resolveMaybeUndefValAllowVariablesMaybeRuntime` are gone. This required
a small change to struct/union/array initializers, to no longer
use `runtime_value` if a field was a `variable` - I'm not convinced this
case was even reachable, as `variable` should only ever exist as the
trivial value of a global runtime `var` decl.
Now, the only case in which a `Sema.resolveMaybeUndefVal`-esque function
can return the `variable` key is `resolveMaybeUndefValAllowVariables`,
which is directly called from `Sema.resolveInstValueAllowVariables`
(previously `Sema.resolveInstValue`), which is only used for resolving
the value of a Decl from `Module.semaDecl`.
While changing these functions, I also slightly reordered and
restructured some of them, and updated their doc comments.
This reverts commit 0c99ba1eab63865592bb084feb271cd4e4b0357e, reversing
changes made to 5f92b070bf284f1493b1b5d433dd3adde2f46727.
This caused a CI failure when it landed in master branch due to a
128-bit `@byteSwap` in std.mem.