There are some restrictions here.
- We either need C11 or a compiler that supports the aligned attribute
- We cannot provide align less than the type's natural C alignment.
* AIR instruction vector_init gains the ability to init arrays and
tuples in addition to vectors. This will probably also gain the
ability to initialize structs and be renamed to `aggregate_init`.
* AstGen prefers to use an `anon_array_init` ZIR instruction for
local variables when the init expr is an array literal and there is
no type.
This reverts commit d48e4245b68bf25c7f41804a5012ac157a5ee546.
I have no idea why this is failing Drone CI, but in a branch, reverting
this commit solved the problem.
It is the job of codegen backends to mark Decls that are referenced as
alive so that the frontend does not sweep them with the garbage. This
commit unifies the code between the backends with an added method on
Decl.
The implementation is more complete than before, switching on the Decl
val tag and recursing into sub-values.
As a result, two more array tests are passing.
Introduce `validate_array_init_comptime`, similar to
`validate_struct_init_comptime` introduced in
713d2a9b3883942491b40738245232680877cc66.
`zirValidateArrayInit` is improved to detect comptime array literals and
emit AIR accordingly. This code is very similar to the changes
introduced in that same commit for `zirValidateStructInit`.
The C backend needed some improvements to continue passing the same set
of tests:
* `resolveInst` for arrays now will add a local `static const` with the
array value and so then `elem_val` instructions reference that local.
It memoizes accesses using `value_map`, which is changed to use
`Air.Inst.Ref` as the key rather than `Air.Inst.Index`.
* This required a mechanism for writing to a "header" which is lines
that appear at the beginning of a function body, before everything
else.
* dbg_stmt output comments rather than `#line` directives.
TODO comment reproduced here:
We need to re-evaluate whether to emit these or not. If we naively emit
these directives, the output file will report bogus line numbers because
every newline after the #line directive adds one to the line.
We also don't print the filename yet, so the output is strictly unhelpful.
If we wanted to go this route, we would need to go all the way and not output
newlines until the next dbg_stmt occurs.
Perhaps an additional compilation option is in order?
`Value.elemValue` is improved to support `elem_ptr` values.
AIR:
* `array_elem_val` is now allowed to be used with a vector as the array
type.
* New instructions: splat, vector_init
AstGen:
* The splat ZIR instruction uses coerced_ty for the ResultLoc, avoiding
an unnecessary `as` instruction, since the coercion will be performed
in Sema.
* Builtins that accept vectors now ignore the type parameter. Comment
from this commit reproduced here:
The accepted proposal #6835 tells us to remove the type parameter from
these builtins. To stay source-compatible with stage1, we still observe
the parameter here, but we do not encode it into the ZIR. To implement
this proposal in stage2, only AstGen code will need to be changed.
Sema:
* `clz` and `ctz` ZIR instructions are now handled by the same function
which accept AIR tag and comptime eval function pointer to
differentiate.
* `@typeInfo` for vectors is implemented.
* `@splat` is implemented. It takes advantage of `Value.Tag.repeated` 😎
* `elemValue` is implemented for vectors, when the index is a scalar.
Handling a vector index is still TODO.
* Element-wise coercion is implemented for vectors. It could probably
be optimized a bit, but it is at least complete & correct.
* `Type.intInfo` supports vectors, returning int info for the element.
* `Value.ctz` initial implementation. Needs work.
* `Value.eql` is implemented for arrays and vectors.
LLVM backend:
* Implement vector support when lowering `array_elem_val`.
* Implement vector support when lowering `ctz` and `clz`.
* Implement `splat` and `vector_init`.
It is possible for Zig to emit field ptr instructions to fields whos
type is zero sized. In this case llvm should return a pointer which
points to the next none zero sized parameter.
const locals now detect if the value ends up being comptime known. In
such case, it replaces the runtime AIR instructions with a decl_ref
const.
In the backends, some more sophisticated logic for marking decls as
alive was needed to prevent Decls incorrectly being garbage collected
that were indirectly referenced in such manner.
This commit fixes two problems:
* `zig build-obj` regressed from the cache-mode branch. It would crash
because it assumed that dirname on the emit bin path would not be
null. This assumption was invalid when outputting to the current
working directory - a pretty common use case for `zig build-obj`.
* When using the LLVM backend, `-fno-emit-bin` combined with any other
kind of emitting, such as `-femit-asm`, emitted nothing.
Both issues are now fixed.
Doc comments reproduced here:
This function is called by the frontend before flush(). It communicates that
`options.bin_file.emit` directory needs to be renamed from
`[zig-cache]/tmp/[random]` to `[zig-cache]/o/[digest]`.
The frontend would like to simply perform a file system rename, however,
some linker backends care about the file paths of the objects they are linking.
So this function call tells linker backends to rename the paths of object files
to observe the new directory path.
Linker backends which do not have this requirement can fall back to the simple
implementation at the bottom of this function.
This function is only called when CacheMode is `whole`.
This solves stack trace regressions on Windows and macOS because the
linker backends do not observe object file paths until flush().
Effectively a small continuation of #10152
This allows the for.zig behavior tests to pass. Unfortunately to fully test everything I had to move a lot of behavior tests from array.zig; most of them now pass (sorry @rainbowbismuth!)
I'm also conflicted on how I store constants into arrays because it's kind of stupid; array's can't be re-initialized using the same syntax, so instead of initializing each element, a new array is made which is copied into the destination. This also required that renderValue can't emit string literals for byte arrays given that they need to always have an extra byte for the NULL terminator, meaning that strings are no longer grep-able in the output.
Comment from this commit reproduced here:
LLVM does not allow us to change the type of globals. So we must
create a new global with the correct type, copy all its attributes,
and then update all references to point to the new global,
delete the original, and rename the new one to the old one's name.
This is necessary because LLVM does not support const bitcasting
a struct with padding bytes, which is needed to lower a const union value
to LLVM, when a field other than the most-aligned is active. Instead,
we must lower to an unnamed struct, and pointer cast at usage sites
of the global. Such an unnamed struct is the cause of the global type
mismatch, because we don't have the LLVM type until the *value* is created,
whereas the global needs to be created based on the type alone, because
lowering the value may reference the global as a pointer.
* fix initialisation of void* fields of structs (initialises to 0xaa.. rather than {})
* don't generate struct fields when the field type does not have codegen bits
* in airAlloc generate a void* literal if the element type does not have codegen bits
Introduced a new AIR instruction: `tag_name`. Reasons to do this
instead of lowering it in Sema to a switch, function call, array
lookup, or if-else tower:
* Sema is a bottleneck; do less work in Sema whenever possible.
* If any optimization passes run, and the operand to becomes
comptime-known, then it could change to have a comptime result
value instead of lowering to a function or array or something which
would then have to be garbage-collected.
* Backends may want to choose to use a function and a switch branch,
or they may want to use a different strategy.
Codegen for `@tagName` is implemented for the LLVM backend but not any
others yet.
Introduced some new `Type` tags:
* `const_slice_u8_sentinel_0`
* `manyptr_const_u8_sentinel_0`
The motivation for this was to make typeof() on the tag_name AIR
instruction non-allocating.
A bunch more enum tests are passing now.
Layout algorithm: all `align(0)` fields are squished together as if they
were a single integer with a number of bits equal to `@bitSizeOf` each
field added together. Then the natural ABI alignment of that integer is
used for that pseudo-field.
* Extract common logic between `zirStructInitEmpty` and
`zirStructInit`.
* `resolveTypeFields` additionally sets status to `have_layout` if the
total number of fields is 0.
While this is technically incorrect, proper handling of anyopaque, as well
as regular opaque, is probably best left until pointers to zero-sized types
having no bits is abolished.
This allows the inferred error set of comptime and inline invocations to be
resolved separately from the inferred error set of the runtime version or other
comptime/inline invocations.
This branch introduced std.Target.TargetAbi when we already had
std.Target.Abi which was, unsurprisingly, already suited for this task.
Also pull out the -mabi= cc flag addition to the common area instead of
duplicating it for assembly and c files.
The target abi can also be set in build.zig via LibExeObjStep.target_abi
The value passed in is checked that it is a valid value in
std.Target.TargetAbi
The target abi is also validated against the target cpu
Previously, when a coercion needed to be inserted into a break
instruction, the `br` AIR instruction would be rewritten so that the
block operand was a sub-block that did the coercion. The problem is that
the sub-block itself was never added to the parent block, resulting in
the `br` instruction operand being a bad reference.
Now, the `br` AIR instruction that needs to have coercion instructions
added is replaced with the sub-block itself with type `noreturn`, and
then the sub-block has the coercion instructions and a new `br`
instruction that breaks from the original block.
LLVM backend needed to be fixed to lower `noreturn` blocks without
emitting an unused LLVM basic block.
* Introduce a mechanism into Sema for emitting a compile error when an
integer is too big and we need it to fit into a usize.
* Add `@intCast` where necessary
* link/MachO: fix an unnecessary allocation when all that was happening
was appending zeroes to an ArrayList.
* Add `error.Overflow` as a possible error to some codepaths, allowing
usage of `math.intCast`.
closes#9710