This commit allows using ZON (Zig Object Notation) in a few ways.
* `@import` can be used to load ZON at comptime and convert it to a
normal Zig value. In this case, `@import` must have a result type.
* `std.zon.parse` can be used to parse ZON at runtime, akin to the
parsing logic in `std.json`.
* `std.zon.stringify` can be used to convert arbitrary data structures
to ZON at runtime, again akin to `std.json`.
Allows the stack trace tests to be additionally compiled and run with
`.use_llvm = false, .use_lld = false` depending on the host target. This
is currently enabled for x86_64 targets emitting ELF.
Self-hosted backends emit slightly different DWARF info to the LLVM
backend, so the checking logic (and the tests themselves) had to be
tweaked slightly to support both backends at once.
Acts as a replacement for `addSharedLibrary` and `addStaticLibrary`, but
linking mode can be changed more easily in build.zig, for example:
In library:
```zig
const linkage = b.option(std.builtin.LinkMode, "linkage", "Link mode for a foo_bar library") orelse .static; // or other default
const lib = b.addLibrary(.{
.linkage = linkage,
.name = "foo_bar",
.root_module = mod,
});
```
In consumer:
```zig
const dep_foo_bar = b.dependency("foo_bar", .{
.target = target,
.optimize = optimize,
.linkage = .static // or dynamic
});
mod.linkLibrary(dep_foor_bar.artifact("foo_bar"));
```
It also matches nicely with `linkLibrary` name.
Signed-off-by: Eric Joldasov <bratishkaerik@landless-city.net>
Without doing this, we don't actually test whether the data layout string we
generate matches LLVM's.
A number of targets had to be commented out due to this change:
* Some are using a non-working experimental LLVM backend (arc, csky, ...).
* Some don't have working LLD support (lanai, sparc, ...).
* Some don't have working self-hosted linker support (nvptx).
* Some are using ABIs that haven't been standardized (loongarch32).
Finally, all non-x86 uefi targets are hopelessly broken and can't really be
fixed until we change our emit logic to lower *-uefi-* verbatim rather than to
*-windows-*. See: https://github.com/ziglang/zig/issues/21630
Previously, stepping from the single statement within the loop would
always exit the loop because all of the code unrolled from the loop is
associated with the same line and treated by the debugger as one line.
This commit reworks how anonymous struct literals and tuples work.
Previously, an untyped anonymous struct literal
(e.g. `const x = .{ .a = 123 }`) was given an "anonymous struct type",
which is a special kind of struct which coerces using structural
equivalence. This mechanism was a holdover from before we used
RLS / result types as the primary mechanism of type inference. This
commit changes the language so that the type assigned here is a "normal"
struct type. It uses a form of equivalence based on the AST node and the
type's structure, much like a reified (`@Type`) type.
Additionally, tuples have been simplified. The distinction between
"simple" and "complex" tuple types is eliminated. All tuples, even those
explicitly declared using `struct { ... }` syntax, use structural
equivalence, and do not undergo staged type resolution. Tuples are very
restricted: they cannot have non-`auto` layouts, cannot have aligned
fields, and cannot have default values with the exception of `comptime`
fields. Tuples currently do not have optimized layout, but this can be
changed in the future.
This change simplifies the language, and fixes some problematic
coercions through pointers which led to unintuitive behavior.
Resolves: #16865
Under some architecture/operating system combinations it is forbidden
to return a pointer from a merge, as these pointers must point to a
location at compile time. This adds a check for those cases when
returning a pointer from a block merge.
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.
This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
I'm so sorry.
This commit was just meant to be making all types fully resolve by
queueing resolution at the moment of their creation. Unfortunately, a
lot of dominoes ended up falling. Here's what happened:
* I added a work queue job to fully resolve a type.
* I realised that from here we could eliminate `Sema.types_to_resolve`
if we made function codegen a separate job. This is desirable for
simplicity of both spec and implementation.
* This led to a new AIR traversal to detect whether any required type is
unresolved. If a type in the AIR failed to resolve, then we can't run
codegen.
* Because full type resolution now occurs by the work queue job, a bug
was exposed whereby error messages for type resolution were associated
with the wrong `Decl`, resulting in duplicate error messages when the
type was also resolved "by" its owner `Decl` (which really *all*
resolution should be done on).
* A correct fix for this requires using a different `Sema` when
performing type resolution: we need a `Sema` owned by the type. Also
note that this fix is necessary for incremental compilation.
* This means a whole bunch of functions no longer need to take `Sema`s.
* First-order effects: `resolveTypeFields`, `resolveTypeLayout`, etc
* Second-order effects: `Type.abiAlignmentAdvanced`, `Value.orderAgainstZeroAdvanced`, etc
The end result of this is, in short, a more correct compiler and a
simpler language specification. This regressed a few error notes in the
test cases, but nothing that seems worth blocking this change.
Oh, also, I ripped out the old code in `test/src/Cases.zig` which
introduced a dependency on `Compilation`. This dependency was
problematic at best, and this code has been unused for a while. When we
re-enable incremental test cases, we must rewrite their executor to use
the compiler server protocol.
Adds a missing call to addLazyPathDependenciesOnly in
std.Build.Module.addCSourceFiles. Also fixes an issue in
std.Build.Step.WriteFile where it wasn't updating all the GeneratedFile
instances for every directory. To fix the second issue, I removed
all the GeneratedFile instances and now all files/directories reference
the steps main GeneratedFile via sub paths.
Instead of introducing YES_COLOR, a completely new standard, into the mix
it might make more sense to instead tag along with the CLICOLOR_FORCE env var,
which dates back to at least 2000 with FreeBSD 4.1.1 and which is
supported by tools like CMake.
<https://bixense.com/clicolors/>
You don't know if it's possible to run a binary until you try. The build
system already integrates with executors and has the
`skip_foreign_checks` for exactly this use case.