The old isARM() function was a portability trap. With the name it had, it seemed
like the obviously correct function to use, but it didn't include Thumb. In the
vast majority of cases where someone wants to ask "is the target Arm?", Thumb
*should* be included.
There are exactly 3 cases in the codebase where we do actually need to exclude
Thumb, although one of those is in Aro and mirrors a check in Clang that is
itself likely a bug. These rare cases can just add an extra isThumb() check.
There is one minor language change here, which is that comparisons of
the form `comptime_inf < runtime_f32` have their results comptime-known.
This is consistent with comparisons against comptime NaN for instance,
which are always comptime known. A corresponding behavior test is added.
This fixes a bug with int comparison elision which my previous commit
somehow triggered. `Sema.compareIntsOnlyPossibleResult` is much cleaner
now!
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.
This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
Reorganize how the binOp and genBinOp functions work.
I've spent quite a while here reading exactly through the spec and so many
tests are enabled because of several critical issues the old design had.
There are some regressions that will take a long time to figure out individually
so I will ignore them for now, and pray they get fixed by themselves. When
we're closer to 100% passing is when I will start diving into them one-by-one.
what was happening is that instructions like `lb` were only affecting the lower bytes of the register and leaving the top dirty. this would lead to situtations were `cmp_eq` for example was using `xor`, which was failing because of the left-over stuff in the top of the register.
with this commit, we now zero out or truncate depending on the context, to ensure instructions like xor will provide proper results.
- implements `airSlice`, `airBitAnd`, `airBitOr`, `airShr`.
- got a basic design going for the `airErrorName` but for some reason it simply returns
empty bytes. will investigate further.
- only generating `.got.zig` entries when not compiling an object or shared library
- reduced the total amount of ops a mnemonic can have to 3, simplifying the logic
The old vectorization helper (WipElementWise) was clunky and a bit
annoying to use, and it wasn't really flexible enough.
This introduces a new vectorization helper, which uses Temporary and
Operation types to deduce a Vectorization to perform the operation
in a reasonably efficient manner. It removes the outer loop
required by WipElementWise so that implementations of AIR instructions
are cleaner. This helps with sanity when we start to introduce support
for composite integers.
airShift, convertToDirect, convertToIndirect, and normalize are initially
implemented using this new method.
Besides the Intel OpenCL CPU runtime, we can now run the
behavior tests using the Portable Computing Language. This
implementation is open-source, so it will be easier for us
to patch in updated versions of spirv-llvm-translator that
have bug fixes etc.
* 128-bit integer multiplication with overflow
* more instruction encodings used by std inline asm
* implement the `try_ptr` air instruction
* follow correct stack frame abi
* enable full panic handler
* enable stack traces