Andrew Kelley
e7b18a7ce6
std.crypto: remove inline from most functions
...
To quote the language reference,
It is generally better to let the compiler decide when to inline a
function, except for these scenarios:
* To change how many stack frames are in the call stack, for debugging
purposes.
* To force comptime-ness of the arguments to propagate to the return
value of the function, as in the above example.
* Real world performance measurements demand it. Don't guess!
Note that inline actually restricts what the compiler is allowed to do.
This can harm binary size, compilation speed, and even runtime
performance.
`zig run lib/std/crypto/benchmark.zig -OReleaseFast`
[-before-] vs {+after+}
md5: [-990-] {+998+} MiB/s
sha1: [-1144-] {+1140+} MiB/s
sha256: [-2267-] {+2275+} MiB/s
sha512: [-762-] {+767+} MiB/s
sha3-256: [-680-] {+683+} MiB/s
sha3-512: [-362-] {+363+} MiB/s
shake-128: [-835-] {+839+} MiB/s
shake-256: [-680-] {+681+} MiB/s
turboshake-128: [-1567-] {+1570+} MiB/s
turboshake-256: [-1276-] {+1282+} MiB/s
blake2s: [-778-] {+789+} MiB/s
blake2b: [-1071-] {+1086+} MiB/s
blake3: [-1148-] {+1137+} MiB/s
ghash: [-10044-] {+10033+} MiB/s
polyval: [-9726-] {+10033+} MiB/s
poly1305: [-2486-] {+2703+} MiB/s
hmac-md5: [-991-] {+998+} MiB/s
hmac-sha1: [-1134-] {+1137+} MiB/s
hmac-sha256: [-2265-] {+2288+} MiB/s
hmac-sha512: [-765-] {+764+} MiB/s
siphash-2-4: [-4410-] {+4438+} MiB/s
siphash-1-3: [-7144-] {+7225+} MiB/s
siphash128-2-4: [-4397-] {+4449+} MiB/s
siphash128-1-3: [-7281-] {+7374+} MiB/s
aegis-128x4 mac: [-73385-] {+74523+} MiB/s
aegis-256x4 mac: [-30160-] {+30539+} MiB/s
aegis-128x2 mac: [-66662-] {+67267+} MiB/s
aegis-256x2 mac: [-16812-] {+16806+} MiB/s
aegis-128l mac: [-33876-] {+34055+} MiB/s
aegis-256 mac: [-8993-] {+9087+} MiB/s
aes-cmac: 2036 MiB/s
x25519: [-20670-] {+16844+} exchanges/s
ed25519: [-29763-] {+29576+} signatures/s
ecdsa-p256: [-4762-] {+4900+} signatures/s
ecdsa-p384: [-1465-] {+1500+} signatures/s
ecdsa-secp256k1: [-5643-] {+5769+} signatures/s
ed25519: [-21926-] {+21721+} verifications/s
ed25519: [-51200-] {+50880+} verifications/s (batch)
chacha20Poly1305: [-1189-] {+1109+} MiB/s
xchacha20Poly1305: [-1196-] {+1107+} MiB/s
xchacha8Poly1305: [-1466-] {+1555+} MiB/s
xsalsa20Poly1305: [-660-] {+620+} MiB/s
aegis-128x4: [-76389-] {+78181+} MiB/s
aegis-128x2: [-53946-] {+53495+} MiB/s
aegis-128l: [-27219-] {+25621+} MiB/s
aegis-256x4: [-49351-] {+49542+} MiB/s
aegis-256x2: [-32390-] {+32366+} MiB/s
aegis-256: [-8881-] {+8944+} MiB/s
aes128-gcm: [-6095-] {+6205+} MiB/s
aes256-gcm: [-5306-] {+5427+} MiB/s
aes128-ocb: [-8529-] {+13974+} MiB/s
aes256-ocb: [-7241-] {+9442+} MiB/s
isapa128a: [-204-] {+214+} MiB/s
aes128-single: [-133857882-] {+134170944+} ops/s
aes256-single: [-96306962-] {+96408639+} ops/s
aes128-8: [-1083210101-] {+1073727253+} ops/s
aes256-8: [-762042466-] {+767091778+} ops/s
bcrypt: 0.009 s/ops
scrypt: [-0.018-] {+0.017+} s/ops
argon2: [-0.037-] {+0.060+} s/ops
kyber512d00: [-206057-] {+205779+} encaps/s
kyber768d00: [-156074-] {+150711+} encaps/s
kyber1024d00: [-116626-] {+115469+} encaps/s
kyber512d00: [-181149-] {+182046+} decaps/s
kyber768d00: [-136965-] {+135676+} decaps/s
kyber1024d00: [-101307-] {+100643+} decaps/s
kyber512d00: [-123624-] {+123375+} keygen/s
kyber768d00: [-69465-] {+70828+} keygen/s
kyber1024d00: [-43117-] {+43208+} keygen/s
2025-07-13 18:26:13 +02:00
Frank Denis
e45bdc6bd6
std.crypto.pcurves.*: simpler, smaller, faster u64 addition with carry ( #19644 )
...
signature/s:
Algorithm Before After
---------------+---------+-------
ecdsa-p256 3707 4396
ecdsa-p384 1067 1332
ecdsa-secp256k1 4490 5147
Add ECDSA to the benchmark by the way.
2024-04-14 01:13:22 +02:00
mlugg
f26dda2117
all: migrate code to new cast builtin syntax
...
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:
* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
2023-06-24 16:56:39 -07:00
Veikka Tuominen
622311fb9a
update uses of overflow arithmetic builtins
2022-12-27 15:13:14 +02:00
Frank Denis
26aea8cfa1
crypto: add support for the NIST P-384 curve ( #11735 )
...
After P-256, here comes P-384, also known as secp384r1.
Like P-256, it is required for TLS, and is the current NIST recommendation for key exchange and signatures, for better or for worse.
Like P-256, all the finite field arithmetic has been computed and verified to be correct by fiat-crypto.
2022-05-31 17:29:38 +02:00