added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
Most of the functions related to points on the Edwards25519 curve
check that input points are not in a small-order subgroup.
They don't check that points are on the prime-order subgroup,
because this is expensive, and not always necessary.
However, applications may require such a check in order to
ensure that a public key is valid, and that a secret key counterpart
exists.
Many functions in the public API of libsodium related to arithmetic
over Edwards25519 also do that check unconditionally. This is
expensive, but a good way to catch bugs in protocols and
implementations.
So, add a `rejectUnexpectedSubgroup()` function to achieve this.
The documentation on the edwards25519->curve25519 conversion
function was also updated, in order to explain how to match
libsodium's behavior if necessary.
We use an addition chain to multiply the point by the order of
the prime group.
An alternative we may implement later is Pornin's point halving
technique: https://eprint.iacr.org/2022/1164.pdf
Follow up to #19079, which made test names fully qualified.
This fixes tests that now-redundant information in their test names. For example here's a fully qualified test name before the changes in this commit:
"priority_queue.test.std.PriorityQueue: shrinkAndFree"
and the same test's name after the changes in this commit:
"priority_queue.test.shrinkAndFree"
The low-level `Curve25519.fromEdwards25519()` function assumed
that the X/Y coordinates were not scaled (Z=1).
But this is not guaranteed to be the case.
In most real-world applications, the coordinates are freshly decoded,
either directly or via the `X25519.fromEd25519()` function, so this
is not an issue.
However, since we offer the ability to do that conversion after
arbitrary computations, the assertion was not correct.
* 128-bit integer multiplication with overflow
* more instruction encodings used by std inline asm
* implement the `try_ptr` air instruction
* follow correct stack frame abi
* enable full panic handler
* enable stack traces
This reverts commit 0c99ba1eab63865592bb084feb271cd4e4b0357e, reversing
changes made to 5f92b070bf284f1493b1b5d433dd3adde2f46727.
This caused a CI failure when it landed in master branch due to a
128-bit `@byteSwap` in std.mem.
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:
* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
This is the x25519 counterpart to `edwards25519.clearCofactor()`.
It is useful to check for low-order points in protocols where it matters and where clamping cannot work, such as PAKEs.
We already have a LICENSE file that covers the Zig Standard Library. We
no longer need to remind everyone that the license is MIT in every single
file.
Previously this was introduced to clarify the situation for a fork of
Zig that made Zig's LICENSE file harder to find, and replaced it with
their own license that required annual payments to their company.
However that fork now appears to be dead. So there is no need to
reinforce the copyright notice in every single file.
Conflicts:
* doc/langref.html.in
* lib/std/enums.zig
* lib/std/fmt.zig
* lib/std/hash/auto_hash.zig
* lib/std/math.zig
* lib/std/mem.zig
* lib/std/meta.zig
* test/behavior/alignof.zig
* test/behavior/bitcast.zig
* test/behavior/bugs/1421.zig
* test/behavior/cast.zig
* test/behavior/ptrcast.zig
* test/behavior/type_info.zig
* test/behavior/vector.zig
Master branch added `try` to a bunch of testing function calls, and some
lines also had changed how to refer to the native architecture and other
`@import("builtin")` stuff.
std/crypto: use finer-grained error sets in function signatures
Returning the `crypto.Error` error set for all crypto operations
was very convenient to ensure that errors were used consistently,
and to avoid having multiple error names for the same thing.
The flipside is that callers were forced to always handle all
possible errors, even those that could never be returned by a
function.
This PR makes all functions return union sets of the actual errors
they can return.
The error sets themselves are all limited to a single error.
Larger sets are useful for platform-specific APIs, but we don't have
any of these in `std/crypto`, and I couldn't find any meaningful way
to build larger sets.
Let's follow the road paved by the removal of 'z'/'Z', the Formatter
pattern is nice enough to let us remove the remaining four special cases
and declare u8 slices free from any special casing!
Leverage result location semantics for X25519 like we do everywhere
else in 25519/*
Also add the edwards25519->curve25519 map by the way since many
applications seem to use this to share the same key pair for encryption
and signature.
This is slightly slower but makes our verification function compatible
with batch signatures. Which, in turn, makes blockchain people happy.
And we want to make our users happy.
Add convenience functions to substract edwards25519 points and to
clear the cofactor.
This is a rewrite of the x25519 code, that generalizes support for
common primitives based on the same finite field.
- Low-level operations can now be performed over the curve25519 and
edwards25519 curves, as well as the ristretto255 group.
- Ed25519 signatures have been implemented.
- X25519 is now about twice as fast.
- mem.timingSafeEqual() has been added for constant-time comparison.
Domains have been clearly separated, making it easier to later add
platform-specific implementations.