Previously, struct types, alignment values, and initialization
expressions were all lowered into the same ZIR body, which caused false
positive "depends on itself" errors when the initialization expression
depended on the size of the struct.
This also uses ResultLoc.coerced_ty for struct field alignment and
initialization values. The resulting ZIR encoding ends up being roughly
the same, neither smaller nor larger than previously.
Closes#12029
llvm: dump failed module when -femit-llvm-ir set
print_air:
* print fully qualified name
* use Type.fmt and Value.fmtValue, fmtDebug is useless
TypedValue
* handle anon structs and tuples
* fix bugs
And use it to debug a LazySrcLoc in stage2 that is set to a bogus value.
The actual fix in this commit is:
```diff
- try sema.emitBackwardBranch(&child_block, call_src);
+ try sema.emitBackwardBranch(block, call_src);
```
The main purpose of this commit is to prepare to implement support for
callconv(), align(), linksection(), and addrspace() annotations on
generic functions where the provided expression depends on comptime
parameters (making the function generic).
It's a rather involved change, so this commit only makes the necessary
changes to AstGen without regressing any behavior, and a follow-up
commit can finish the task by making the enhancements to Sema.
By my quick estimation, the new encoding for functions is a negligible
improvement - along the lines of 0.005% fewer total ZIR bytes on
average. Still, it's nice that this commit, while adding more
data into ZIR, actually ends up reducing the storage size thanks to a
slightly more sophisticated encoding.
Zir.Inst.ExtendedFunc is renamed to Zir.Inst.FuncFancy to eliminate
confusion about it being an extended instruction (it used to be but is
no longer). The encoding for this instruction is completely reworked.
The encoding for Zir.Inst.Func is also changed slightly - when the
return type body length is 1, then only a Zir.Inst.Ref is provided; not
a full body.
linksection() and addrspace() are now communicated via func_fancy ZIR
instruction rather than as part of the corresponding decl. This allows
their expressions to observe comptime parameters.
This is a temporary addition to stage2 in order to match stage1 behavior,
however the end-game once the lang spec is settled will be to use a global
InternPool for comptime memoized objects, making this behavior consistent
across all types, not only string literals. Or, we might decide to not
guarantee string literals to have equal comptime pointers, in which case
this commit can be reverted.
stage2: change logic for detecting whether the main package is inside
the std package. Previously it relied on realpath() which is not portable.
This uses resolve() which is how imports already work.
* stage2: fix cleanup bug when creating Module
* flatten lib/std/special/* to lib/*
- this was motivated by making main_pkg_is_inside_std false for
compiler_rt & friends.
* rename "mini libc" to "universal libc"
So far it's supported by the LLVM backend only. I recommend for the
other backends to wait for the resolution of #10761 before adding
support for this feature.
This reverts commit a430630002bf02162ccbf8d3eb10fd73e490cefd.
Wait a minute, I'm sorry, I need to revert this. The whole premise
of this change is broken because the point of the hash is that it tells
whether the same compilation has been done before. This requires items
to be added to the hash in the same sequence every time. This means that
introducing a lock is fundamentally broken because the order needs to be
the same in future runs of the compiler, and not decided by threads
racing against each other.
The proper solution to this is to, in whole cache mode, append the hash
inputs to some data structure, and then after the compilation is
complete, do some kind of sorting on the hash inputs so that they will
be the same order every time, then apply them in sequence. No lock on
the Cache object is needed for this scheme.
Rather than allocating Decl objects with an Allocator, we instead allocate
them with a SegmentedList. This provides four advantages:
* Stable memory so that one thread can access a Decl object while another
thread allocates additional Decl objects from this list.
* It allows us to use u32 indexes to reference Decl objects rather than
pointers, saving memory in Type, Value, and dependency sets.
* Using integers to reference Decl objects rather than pointers makes
serialization trivial.
* It provides a unique integer to be used for anonymous symbol names,
avoiding multi-threaded contention on an atomic counter.
* The `@bitCast` workaround is removed in favor of `@ptrCast` properly
doing element casting for slice element types. This required an
enhancement both to stage1 and stage2.
* stage1 incorrectly accepts `.{}` instead of `{}`. stage2 code that
abused this is fixed.
* Make some parameters comptime to support functions in switch
expressions (as opposed to making them function pointers).
* Avoid relying on local temporaries being mutable.
* Workarounds for when stage1 and stage2 disagree on function pointer
types.
* Workaround recursive formatting bug with a `@panic("TODO")`.
* Remove unreachable `else` prongs for some inferred error sets.
All in effort towards #89.
The problem was that types of non-anytype parameters were being included
as part of the check to see if generic function instantiations were
equal. Now, Module.Fn additionally stores the information for whether each
parameter is anytype or not. `generic_poison` cannot be used to signal
this because the type is still needed for comptime arguments; in such
case the type will not be present in the newly generated function
prototype.
This presented one additional challenge: we need to compare equality of
two values where one of them is post-coercion and the other is not. So
we make some minor adjustments to `Type.eql` to support this. I think
this small complexity tradeoff is worth it because it means the compiler
does much less work on the hot path that a generic function is called
and there is already an existing matching instantiation.
closes#11146
* If more than one error is reported for the same Decl, the first error
message is kept and the second one discarded.
* Prevent functions from being sent to codegen backends if there were
any errors resolving any of their parameter types or return type.
* Sema: store the precomputed monomorphed_funcs hash inside Module.Fn.
This is important because it may be accessed when resizing monomorphed_funcs
while this Fn has already been added to the set, but does not have the
owner_decl, comptime_args, or other fields populated yet.
* Sema: in `analyzeIsNonErr`, take advantage of the AIR tag being
`wrap_errunion_payload` to infer that `is_non_err` is comptime true
without performing any error set resolution.
- Also add some code to check for empty inferred error sets in this
function. If necessary we do resolve the inferred error set.
* Sema: queue full type resolution of payload type when
`wrap_errunion_payload` AIR instruction is emitted. This ensures the
backend may check the alignment of it.
* Sema: resolveTypeFully now additionally resolves comptime-only
status.
closes#11306
* std.meta: correct use of `default_value` in reification. stage1
accepted a wrong type for `null`.
* Sema: after instantiating a generic function, if the return type ends
up being a comptime-known type, then we return an error, undoing the
generic function instantiation, and making a comptime function call
instead.
- We also needed to clean up the dependency graph in this case.
* Sema: reified enums set tag_ty_inferred to false since an integer tag
type is provided. This is a limitation of the `@Type` builtin which
will be addressed with #10710.
* Sema: fix resolveInferredErrorSet incorrectly calling
ensureFuncBodyAnalyzed on generic functions.
That happens after a function body is analyzed. This prevents circular
dependency compile errors and yet a way to mark types that need to be
fully resolved before a given function is sent to the codegen backend.
This commit adds a new optional argument to several Value methods which
provides the ability to resolve types if it comes to it. This prevents
having duplicated logic inside both Sema and Value.
With this commit, the "struct contains slice of itself" test is passing
by exploiting the new lazy_align Value Tag.