We're currently experimenting with backends which effectively do their
own liveness analysis, so this old trick of mine isn't necessarily valid
anymore. However, we can fix that trivially: just make the "nop"
instruction we jam into here have the right type. That way, the leftover
field/element pointer instructions are perfectly valid, but still
unused.
This is redundant because `storePtr2` will coerce to the return type
which (in `Sema.coerceInMemoryAllowedErrorSets`) will add errors to the
current function's IES if necessary.
This logic predates certain Sema enhancements whose behavior it
essentially tries to emulate in one specific case in a problematic way.
In particular, this logic handled initializing comptime-known `const`s
through RLS, which was reworked a few years back in 644041b to not rely
on this logic, and catching runtime fields in comptime-only
initializers, which has since been *correctly* fixed with better checks
in `Sema.storePtr2`. That made the highly complex logic in
`validateStructInit`, `validateUnionInit`, and `zirValidatePtrArrayInit`
entirely redundant. Worse, it was also causing some tracked bugs, as
well as a bug which I have identified and fixed in this PR (a
corresponding behavior test is added).
This commit simplifies union initialization by bringing the runtime
logic more in line with the comptime logic: the tag is now always
populated by `Sema.unionFieldPtr` based on `initializing`, where this
previously happened only in the comptime case (with `validateUnionInit`
instead handling it in the runtime case). Notably, this means that
backends are now able to consider getting a pointer to an inactive union
field as Illegal Behavior, because the `set_union_tag` instruction now
appears *before* the `struct_field_ptr` instruction as you would
probably expect it to.
Resolves: #24520Resolves: #24595
Add an additional check before emitting `.loop_switch_br` instead
of `.switch_br` in a tagged switch statement for whether any of the
continues referencing its tag are actually runtime reachable.
This fixes triggering an assertion in Liveness caused by the invalid
assumption that every tagged switch must be a loop if its tag is
referenced in any way even if this reference is not runtime reachable.
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
Also remove `@frameSize`, closing #3654.
While the other machinery might remain depending on #23446, it is
settled that there will not be `async`/ `await` keywords in the
language.
There will be more call sites to `preparePanicId` as we transition away
from safety checks in Sema towards safety checked instructions; it's
silly for them to all have this clunky usage.
This safety check was completely broken; it triggered unchecked illegal
behavior *in order to implement the safety check*. You definitely can't
do that! Instead, we must explicitly check the boundaries. This is a
tiny bit fiddly, because we need to make sure we do floating-point
rounding in the correct direction, and also handle the fact that the
operation truncates so the boundary works differently for min vs max.
Instead of implementing this safety check in Sema, there are now
dedicated AIR instructions for safety-checked intfromfloat (two
instructions; which one is used depends on the float mode). Currently,
no backend directly implements them; instead, a `Legalize.Feature` is
added which expands the safety check, and this feature is enabled for
all backends we currently test, including the LLVM backend.
The `u0` case is still handled in Sema, because Sema needs to check for
that anyway due to the comptime-known result. The old safety check here
was also completely broken and has therefore been rewritten. In that
case, we just check for 'abs(input) < 1.0'.
I've added a bunch of test coverage for the boundary cases of
`@intFromFloat`, both for successes (in `test/behavior/cast.zig`) and
failures (in `test/cases/safety/`).
Resolves: #24161
These conversion routines accept a `round` argument to control how the
result is rounded and return whether the result is exact. Most callers
wanted this functionality and had hacks around it being missing.
Also delete `std.math.big.rational` because it was only being used for
float conversion, and using rationals for that is a lot more complex
than necessary. It also required an allocator, whereas the new integer
routines only need to be passed enough memory to store the result.
* Sema: allow binary operations and boolean not on vectors of bool
* langref: Clarify use of operators on vectors (`and` and `or` not allowed)
closes#24093
Update the estimated total items for the codegen and link progress nodes
earlier. Rather than waiting for the main thread to dispatch the tasks,
we can add the item to the estimated total as soon as we queue the main
task. The only difference is we need to complete it even in error cases.