Conflicts:
lib/libcxx/include/__config
d57c0cc3bfeff9af297279759ec2b631e6d95140 added support for DragonFlyBSD
to libc++ by updating some ifdefs. This needed to be synced with llvm13.
* New AIR instructions: ptr_add, ptr_sub, ptr_elem_val, ptr_ptr_elem_val
- See the doc comments for details.
* Sema: implement runtime pointer arithmetic.
* Sema: implement elem_val for many-pointers.
* Sema: support coercion from `*[N:s]T` to `[*]T`.
* Type: isIndexable handles many-pointers.
The `comptime_args` field of Fn has a clarified purpose:
For generic function instantiations, there is a `TypedValue` here
for each parameter of the function:
* Non-comptime parameters are marked with a `generic_poison` for the value.
* Non-anytype parameters are marked with a `generic_poison` for the type.
Sema now has a `fn_ret_ty` field. Doc comments reproduced here:
> When semantic analysis needs to know the return type of the function whose body
> is being analyzed, this `Type` should be used instead of going through `func`.
> This will correctly handle the case of a comptime/inline function call of a
> generic function which uses a type expression for the return type.
> The type will be `void` in the case that `func` is `null`.
Various places in Sema are modified in accordance with this guidance.
Fixed `resolveMaybeUndefVal` not returning `error.GenericPoison` when
Value Tag of `generic_poison` is encountered.
Fixed generic function memoization incorrect equality checking. The
logic now clearly deals properly with any combination of anytype and
comptime parameters.
Fixed not removing generic function instantiation from the table in case
a compile errors in the rest of `call` semantic analysis. This required
introduction of yet another adapter which I have called
`GenericRemoveAdapter`. This one is nice and simple - it's the same hash
function (the same precomputed hash is passed in) but the equality
function checks pointers rather than doing any logic.
Inline/comptime function calls coerce each argument in accordance with
the function parameter type expressions. Likewise the return type
expression is evaluated and provided (see `fn_ret_ty` above).
There's a new compile error "unable to monomorphize function". It's
pretty unhelpful and will need to get improved in the future. It happens
when a type expression in a generic function did not end up getting
resolved at a callsite. This can happen, for example, if a runtime
parameter is attempted to be used where it needed to be comptime known:
```zig
fn foo(x: anytype) [x]u8 { _ = x; }
```
In this example, even if we pass a number such as `10` for `x`, it is
not marked `comptime`, so `x` will have a runtime known value, making
the return type unable to resolve.
In the LLVM backend I implement cmp instructions for float types to pass
some behavior tests that used floats.
* ZIR encoding for function instructions have a body for the return
type. This lets Sema for generic functions do the same thing it does
for parameters, handling `error.GenericPoison` in the evaluation of
the return type by marking the function as generic.
* Sema: fix missing block around the new Decl arena finalization. This
led to a memory corruption.
* Added some floating point support to the LLVM backend but didn't get
far enough to pass any new tests.
* AIR no longer has a `variables` array. Instead of the `varptr`
instruction, Sema emits a constant with a `decl_ref`.
* AIR no longer has a `ref` instruction. There is no longer any
instruction that takes a value and returns a pointer to it. If this
is desired, Sema must either create an anynomous Decl and return a
constant `decl_ref`, or in the case of a runtime value, emit an
`alloc` instruction, `store` the value to it, and then return the
`alloc`.
* The `ref_val` Value Tag is eliminated. `decl_ref` should be used
instead. Also added is `eu_payload_ptr` which points to the payload
of an error union, given an error union pointer.
In general, Sema should avoid calling `analyzeRef` if it can be helped.
For example in the case of field_val and elem_val, there should never be
a reason to create a temporary (alloc or decl). Recent previous commits
made progress along that front.
There is a new abstraction in Sema, which looks like this:
var anon_decl = try block.startAnonDecl();
defer anon_decl.deinit();
// here 'anon_decl.arena()` may be used
const decl = try anon_decl.finish(ty, val);
// decl is typically now used with `decl_ref`.
This pattern is used to upgrade `ref_val` usages to `decl_ref` usages.
Additional improvements:
* Sema: fix source location resolution for calling convention
expression.
* Sema: properly report "unable to resolve comptime value" for loads of
global variables. There is now a set of functions which can be
called if the callee wants to obtain the Value even if the tag is
`variable` (indicating comptime-known address but runtime-known value).
* Sema: `coerce` resolves builtin types before checking equality.
* Sema: fix `u1_type` missing from `addType`, making this type have a
slightly more efficient representation in AIR.
* LLVM backend: fix `genTypedValue` for tags `decl_ref` and `variable`
to properly do an LLVMConstBitCast.
* Remove unused parameter from `Value.toEnum`.
After this commit, some test cases are no longer passing. This is due to
the more principled approach to comptime references causing more
anonymous decls to get sent to the linker for codegen. However, in all
these cases the decls are not actually referenced by the runtime machine
code. A future commit in this branch will implement garbage collection
of decls so that unused decls do not get sent to the linker for codegen.
This will make the tests go back to passing.
Frontend improvements:
* When compiling in `zig test` mode, put a task on the work queue to
analyze the main package root file. Normally, start code does
`_ = import("root");` to make Zig analyze the user's code, however in
the case of `zig test`, the root source file is the test runner.
Without this change, no tests are picked up.
* In the main pipeline, once semantic analysis is finished, if there
are no compile errors, populate the `test_functions` Decl with the
set of test functions picked up from semantic analysis.
* Value: add `array` and `slice` Tags.
LLVM backend improvements:
* Fix incremental updates of globals. Previously the
value of a global would not get replaced with a new value.
* Fix LLVM type of arrays. They were incorrectly sending
the ABI size as the element count.
* Remove the FuncGen parameter from genTypedValue. This function is for
generating global constants and there is no function available when
it is being called.
- The `ref_val` case is now commented out. I'd like to eliminate
`ref_val` as one of the possible Value Tags. Instead it should
always be done via `decl_ref`.
* Implement constant value generation for slices, arrays, and structs.
* Constant value generation for functions supports the `decl_ref` tag.
* Add AIR instruction: struct_field_val
- This is part of an effort to eliminate the AIR instruction `ref`.
- It's implemented for C backend and LLVM backend so far.
* Rename `resolvePossiblyUndefinedValue` to `resolveMaybeUndefVal` just
to save some columns on long lines.
* Sema: add `fieldVal` alongside `fieldPtr` (renamed from
`namedFieldPtr`). This is part of an effort to eliminate the AIR
instruction `ref`. The idea is to avoid unnecessary loads, stores,
stack usage, and IR instructions, by paying a DRY cost.
LLVM backend improvements:
* internal linkage vs exported linkage is implemented, along with
aliases. There is an issue with incremental updates due to missing
LLVM API for deleting aliases; see the relevant comment in this commit.
- `updateDeclExports` is hooked up to the LLVM backend now.
* Fix usage of `Type.tag() == .noreturn` rather than calling `isNoReturn()`.
* Properly mark global variables as mutable/constant.
* Fix llvm type generation of function pointers
* Fix codegen for calls of function pointers
* Implement llvm type generation of error unions and error sets.
* Implement AIR instructions: addwrap, subwrap, mul, mulwrap, div,
bit_and, bool_and, bit_or, bool_or, xor, struct_field_ptr,
struct_field_val, unwrap_errunion_err, add for floats, sub for
floats.
After this commit, `zig test` on a file with `test "example" {}`
correctly generates and executes a test binary. However the
`test_functions` slice is undefined and just happens to be going into
the .bss section, causing the length to be 0. The next step towards
`zig test` will be replacing the `test_functions` Decl Value with the
set of test function pointers, before it is sent to linker/codegen.
* properly set global variables to const if they are not a global
variable.
* implement global variable initializations.
* initial implementation of llvmType() for structs and functions.
* implement genTypedValue for variable tags
* implement more AIR instructions: varptr, slice_ptr, slice_len,
slice_elem_val, ptr_slice_elem_val, unwrap_errunion_payload,
unwrap_errunion_payload_ptr, unwrap_errunion_err,
unwrap_errunion_err_ptr.
These AIR instructions are the next blockers for `zig test` to work for
this backend.
After this commit, the "hello world" x86_64 test case passes for the
LLVM backend as well.
* Added doc comments for `std.Target.ObjectFormat` enum
* `std.Target.oFileExt` is removed because it is incorrect for Plan-9
targets. Instead, use `std.Target.ObjectFormat.fileExt` and pass a
CPU architecture.
* Added `Compilation.Directory.joinZ` for when a null byte is desired.
* Improvements to `Compilation.create` logic for computing `use_llvm`
and reporting errors in contradictory flags. `-femit-llvm-ir` and
`-femit-llvm-bc` will now imply `-fLLVM`.
* Fix compilation when passing `.bc` files on the command line.
* Improvements to the stage2 LLVM backend:
- cleaned up error messages and error reporting. Properly bubble up
some errors rather than dumping to stderr; others turn into panics.
- properly call ZigLLVMCreateTargetMachine and
ZigLLVMTargetMachineEmitToFile and implement calculation of the
respective parameters (cpu features, code model, abi name, lto,
tsan, etc).
- LLVM module verification only runs in debug builds of the compiler
- use LLVMDumpModule rather than printToString because in the case
that we incorrectly pass a null pointer to LLVM it may crash during
dumping the module and having it partially printed is helpful in
this case.
- support -femit-asm, -fno-emit-bin, -femit-llvm-ir, -femit-llvm-bc
- Support LLVM backend when used with Mach-O and WASM linkers.
We can now codegen optionals! This includes the following instructions:
- is_null
- is_null_ptr
- is_non_null
- is_non_null_ptr
- optional_payload
- optional_payload_ptr
- br_void
Also includes a test for optionals.
Conflicts:
* src/clang.zig
* src/llvm.zig
- this file got moved to src/llvm/bindings.zig in master branch so I
had to put the new LLVM arch/os enum tags into it.
* lib/std/target.zig, src/stage1/target.cpp
- haiku had an inconsistency with its default target ABI, gnu vs
eabi. In this commit we make it gnu in both places to match the
latest changes by @hoanga.
* src/translate_c.zig
The CLI gains -flto and -fno-lto options to override the default.
However, the cool thing about this is that the defaults are great! In
general when you use build-exe in release mode, Zig will enable LTO if
it would work and it would help.
zig cc supports detecting and honoring the -flto and -fno-lto flags as
well. The linkWithLld functions are improved to all be the same with
regards to copying the artifact instead of trying to pass single objects
through LLD with -r. There is possibly a future improvement here as
well; see the respective TODOs.
stage1 is updated to support outputting LLVM bitcode instead of machine
code when lto is enabled. This allows LLVM to optimize across the Zig and
C/C++ code boundary.
closes#2845