* Identify the ones that are passing and stop skipping them.
* Flatten out the main behavior.zig file and have each individual test
disable itself if it is not passing.
* make it always return a fully qualified name. stage1 is inconsistent
about this.
* AstGen: fix anon_name_strategy to correctly be `func` when anon type
creation happens in the operand of the return expression.
* Sema: implement type names for the "function" naming strategy.
* Put "enum", "union", "opaque", or "struct" in place of "anon" when
creating respective anonymous Decl names.
* std.testing: add `expectStringStartsWith`. Didn't end up using it
after all.
Also this enables the real test runner for stage2 LLVM backend (sans
wasm32) since it works now.
This resolves https://github.com/ziglang/zig/issues/11159
The problem was that:
1. We were not correctly deleting the field stores after recognizing
that an array initializer was a comptime-known value.
2. LLVM was not checking that the final type had no runtime bits, and
so would generate an invalid store.
This also adds several test cases for related bugs, just to check these
in for later work.
We must resolve the type fully so that pointer children (i.e. slices)
are resolved. Additionally, we must resolve even if we can know the
value at comptime because the `alloc_inferred` ZIR always produces a
constant in the AIR.
Fixes#11181
* don't store `has_well_defined_layout` in memory.
* remove struct `hasWellDefinedLayout` logic. it's just
`layout != .Auto`. This means we only need one implementation, in
Type.
* fix some of the cases being wrong in `hasWellDefinedLayout`, such as
optional pointers.
* move `tag_ty_inferred` field into a position that makes it more
obvious how the struct layout will be done. Also we don't have a
compiler that intelligently moves fields around so this layout is
better.
* Sema: don't `resolveTypeLayout` in `zirCoerceResultPtr` unless
necessary.
* Rename `ComptimePtrLoadKit` `target` field to `pointee` to avoid
confusion with `target`.
It is possible for the value length to be longer than the type because
we allow in-memory coercing of types such as `[5:0]u8` to `[5]u8`. In
such a case, the value length is 6 but the type length if 5.
The `.repeated` value type already got this right, so this is extending
similar logic out to `.aggregate` and `.bytes`. Both scenarios are
tested in behavior tests.
Fixes#11165
Adds 2 new AIR instructions:
* dbg_var_ptr
* dbg_var_val
Sema no longer emits dbg_stmt AIR instructions when strip=true.
LLVM backend: fixed lowerPtrToVoid when calling ptrAlignment on
the element type is problematic.
LLVM backend: fixed alloca instructions improperly getting debug
location annotated, causing chaotic debug info behavior.
zig_llvm.cpp: fixed incorrect bindings for a function that should use
unsigned integers for line and column.
A bunch of C test cases regressed because the new dbg_var AIR
instructions caused their operands to be alive, exposing latent bugs.
Mostly it's just a problem that the C backend lowers mutable
and const slices to the same C type, so we need to represent that in the
C backend instead of printing two duplicate typedefs.
In stage1, this behavior was allowed (by accident?) and also
accidentally exercised by the behavior test changed in this commit. In
discussion on Discord, Andrew decided this should not be allowed in
stage2 since there is currently on real world reason to allow this
strange edge case.
I've added the compiler test to solidify that this behavior should NOT
occur and updated the behavior test to the new valid semantics.
Introduce `Module.ensureFuncBodyAnalyzed` and corresponding `Sema`
function. This mirrors `ensureDeclAnalyzed` except also waits until the
function body has been semantically analyzed, meaning that inferred
error sets will have been populated.
Resolving error sets can now emit a "unable to resolve inferred error
set" error instead of producing an incorrect error set type. Resolving
error sets now calls `ensureFuncBodyAnalyzed`. Closes#11046.
`coerceInMemoryAllowedErrorSets` now does a lot more work to avoid
resolving an inferred error set if possible. Same with
`wrapErrorUnionSet`.
Inferred error set types no longer check the `func` field to determine if
they are equal. That was incorrect because an inline or comptime function
call produces a unique error set which has the same `*Module.Fn` value for
this field. Instead we use the `*Module.Fn.InferredErrorSet` pointers to
test equality of inferred error sets.
* use the real start code for LLVM backend with x86_64-linux
- there is still a check for zig_backend after initializing the TLS
area to skip some stuff.
* introduce new AIR instructions and implement them for the LLVM
backend. They are the same as `call` except with a modifier.
- call_always_tail
- call_never_tail
- call_never_inline
* LLVM backend calls hasRuntimeBitsIgnoringComptime in more places to
avoid unnecessarily depending on comptimeOnly being resolved for some
types.
* LLVM backend: remove duplicate code for setting linkage and value
name. The canonical place for this is in `updateDeclExports`.
* LLVM backend: do some assembly template massaging to make `%%`
rendered as `%`. More hacks will be needed to make inline assembly
catch up with stage1.
To unify the wasm backend with the other backends, we will now call `generateSymbol` to
lower a Decl into bytes. This means we also have to change some function signatures
to comply with the linker interface.
Since the general purpose generateSymbol is less featureful than wasm's, some tests are
temporarily disabled.
* Sema: resolve type fully when emitting an alloc AIR instruction to
avoid tripping assertion for checking struct field alignment.
* LLVM backend: keep a reference to the LLVM target data alive during
lowering so that we can ask LLVM what it thinks the ABI alignment
and size of LLVM types are. We need this in order to lower tuples and
structs so that we can put in extra padding bytes when Zig disagrees
with LLVM about the size or alignment of something.
* LLVM backend: make the LLVM struct type packed that contains the most
aligned union field and the padding. This prevents the struct from
being too big according to LLVM. In the future, we may want to
consider instead emitting unions in a "flat" manner; putting the tag,
most aligned union field, and padding all in the same struct field
space.
* LLVM backend: make structs with 2 or fewer fields return isByRef=false.
This results in more efficient codegen. This required lowering of
bitcast to sometimes store the struct into an alloca, ptrcast, and
then load because LLVM does not allow bitcasting structs.
* enable more passing behavior tests.
* AstGen: remove the setBlockBodyEliding function. This is no longer
needed after 63788b2a511eb87974065a052e2436b0c6202544.
* Sema: store_to_block_ptr instruction is handled as
store_to_inferred_ptr or store, as necessary.
Instead of explicitly setting lhs to .none,
check if the lhs instruction was analyzed.
This simpler approach also handles stores from nested blocks correctly.
The mechanism behind initializing a union's tag is a bit complicated,
depending on whether the union is initialized at runtime,
forced comptime, or implicit comptime.
`coerce_result_ptr` now does not force a block to be a runtime context;
instead of adding runtime instructions directly, it forwards analysis to
the respective functions for initializing optionals and error unions.
`validateUnionInit` now has logic to still emit a runtime
`set_union_tag` instruction even if the union pointer is comptime-known,
for the case of a pointer that is not comptime mutable, such as a
variable or the result of `@intToPtr`.
`validateStructInit` looks for a completely different pattern now; it
now handles the possibility of the corresponding AIR instruction for
the `field_ptr` to be missing or the corresponding `store` to be missing.
See the new comment added to the function for more details. An
equivalent change should probably be made to `validateArrayInit`.
`analyzeOptionalPayloadPtr` and `analyzeErrUnionPayloadPtr` functions now
emit a `optional_payload_ptr_set` or `errunion_payload_ptr_set`
instruction respectively if `initializing` is true and the pointer value
is not comptime-mutable.
`storePtr2` now tries the comptime pointer store before checking if the
element type has one possible value because the comptime pointer store
can have side effects of setting a union tag, setting an optional payload
non-null, or setting an error union to be non-error.
The LLVM backend `lowerParentPtr` function is improved to take into
account the differences in how the LLVM values are lowered depending on
the Zig type. It now handles unions correctly as well as additionally
handling optionals and error unions.
In the LLVM backend, the instructions `optional_payload_ptr_set` and
`errunion_payload_ptr_set` check liveness analysis and only do the side
effects in the case the result of the instruction is unused.
A few wasm and C backend test cases regressed, but they are due to TODOs
in lowering of constants, so this is progress.
This moves the single bugs behavior tests to the outer branch and disables the test cases
for all non-passing backends.
For the larger files, we move it up a single branch and disable it for the c backend.
All test cases that do pass for the c backend however, are enabled.