Storing defers this way has the benefits that the defer doesn't get
analyzed multiple times in AstGen, it takes up less space, and it
makes Sema aware of defers allowing for 'unreachable else prong'
error on error sets in generic code.
The disadvantage is that it is a bit more complex and errdefers with
payloads now emit a placeholder instruction (but those are rare).
Sema.zig before:
Total ZIR bytes: 3.7794370651245117MiB
Instructions: 238996 (2.051319122314453MiB)
String Table Bytes: 89.2802734375KiB
Extra Data Items: 430144 (1.640869140625MiB)
Sema.zig after:
Total ZIR bytes: 3.3344192504882812MiB
Instructions: 211829 (1.8181428909301758MiB)
String Table Bytes: 89.2802734375KiB
Extra Data Items: 374611 (1.4290275573730469MiB)
Previously, struct types, alignment values, and initialization
expressions were all lowered into the same ZIR body, which caused false
positive "depends on itself" errors when the initialization expression
depended on the size of the struct.
This also uses ResultLoc.coerced_ty for struct field alignment and
initialization values. The resulting ZIR encoding ends up being roughly
the same, neither smaller nor larger than previously.
Closes#12029
And use it to debug a LazySrcLoc in stage2 that is set to a bogus value.
The actual fix in this commit is:
```diff
- try sema.emitBackwardBranch(&child_block, call_src);
+ try sema.emitBackwardBranch(block, call_src);
```
* Introduce "_ptr" variants of ZIR try instruction to disallow constructs
such as `try` on a pointer value instead of an error union value.
* Disable the "_inline" variants of the ZIR try instruction for now because
we are out of ZIR tags. I will free up some space in an independent commit.
* AstGen: fix tryExpr calling rvalue() on ResultLoc.ref
The main purpose of this commit is to prepare to implement support for
callconv(), align(), linksection(), and addrspace() annotations on
generic functions where the provided expression depends on comptime
parameters (making the function generic).
It's a rather involved change, so this commit only makes the necessary
changes to AstGen without regressing any behavior, and a follow-up
commit can finish the task by making the enhancements to Sema.
By my quick estimation, the new encoding for functions is a negligible
improvement - along the lines of 0.005% fewer total ZIR bytes on
average. Still, it's nice that this commit, while adding more
data into ZIR, actually ends up reducing the storage size thanks to a
slightly more sophisticated encoding.
Zir.Inst.ExtendedFunc is renamed to Zir.Inst.FuncFancy to eliminate
confusion about it being an extended instruction (it used to be but is
no longer). The encoding for this instruction is completely reworked.
The encoding for Zir.Inst.Func is also changed slightly - when the
return type body length is 1, then only a Zir.Inst.Ref is provided; not
a full body.
linksection() and addrspace() are now communicated via func_fancy ZIR
instruction rather than as part of the corresponding decl. This allows
their expressions to observe comptime parameters.
`@call` allows specifying the modifier explicitly, however it can still
appear in a context that overrides the modifier. This commit adds flags
to the BuiltinCall ZIR encoding. Since we have unused bits I also threw
in the ensure_result_used mechanism.
I also deleted a behavior test that was checking for bound function
behavior where I think stage2 behavior is correct and stage1 behavior
is incorrect.
ZIR instructions updated: atomic_load, atomic_rmw, atomic_store, cmpxchg
These no longer construct a pointer type as the result location. This
solves a TODO that was preventing the pointer from possibly being
volatile, as well as properly handling allowzero and addrspace.
It also allows the pointer to be over-aligned, which may be needed
depending on the target. As a consequence, the element type needs to be
communicated in the ZIR. This is done by strategically making one of the
operands be ResultLoc.ty instead of ResultLoc.coerced_ty if possible, or
otherwise explicitly adding elem_type into the ZIR encoding, such as in
the case of atomic_load.
The pointer type of atomic operations is now checked in Sema by coercing
it to an expected pointer type, that maybe over-aligned according to
target requirements.
Together with the previous commit, Zig now has smaller alignment for
large integers, depending on the target, and yet still has type safety
for atomic operations that specially require higher alignment.
The reason for having `@tan` is that we already have `@sin` and `@cos`
because some targets have machine code instructions for them, but in the
case that the implementation needs to go into compiler-rt, sin, cos, and
tan all share a common dependency which includes a table of data. To
avoid duplicating this table of data, we promote tan to become a builtin
alongside sin and cos.
ZIR: The tag enum is at capacity so this commit moves
`field_call_bind_named` to be `extended`. I measured this as one of
the least used tags in the zig codebase.
Fix libc math suffix for `f32` being wrong in both stage1 and stage2.
stage1: add missing libc prefix for float functions.
* AstGen: restore the param_type ZIR instruction and pass it to the
expression for function call arguments. This does not solve the
problem for generic function parameters, but it catches stage2 up to
stage1 which also does not solve the problem for generic function
parameters.
- Most of the enhancements in this commit will still be needed for a
more sophisticated further improvement to handle generic function
types.
- In Sema, handling of `as` coercion recognizes the `var_args_param`
Type Tag and passes the operand through doing no coercion.
- That was the last ZIR tag and we are now using all 256 ZIR tags.
* AstGen: array init and struct init expressions use the anon form even
when the result location has a type. Prevents the type system
incorrectly believing, for example, that a tuple is actually an array
when the result location is a param_type of a function with `anytype`
parameter.
* Sema: add missing coercion in `unionInit` to coerce the init to the
corresponding union field type.
* `Value.fieldValue` now takes a type and does not take an allocator.
closes#11293
After this commit, stage2 passes all the parser tests.
Adds 2 new AIR instructions:
* dbg_var_ptr
* dbg_var_val
Sema no longer emits dbg_stmt AIR instructions when strip=true.
LLVM backend: fixed lowerPtrToVoid when calling ptrAlignment on
the element type is problematic.
LLVM backend: fixed alloca instructions improperly getting debug
location annotated, causing chaotic debug info behavior.
zig_llvm.cpp: fixed incorrect bindings for a function that should use
unsigned integers for line and column.
A bunch of C test cases regressed because the new dbg_var AIR
instructions caused their operands to be alive, exposing latent bugs.
Mostly it's just a problem that the C backend lowers mutable
and const slices to the same C type, so we need to represent that in the
C backend instead of printing two duplicate typedefs.
* use the real start code for LLVM backend with x86_64-linux
- there is still a check for zig_backend after initializing the TLS
area to skip some stuff.
* introduce new AIR instructions and implement them for the LLVM
backend. They are the same as `call` except with a modifier.
- call_always_tail
- call_never_tail
- call_never_inline
* LLVM backend calls hasRuntimeBitsIgnoringComptime in more places to
avoid unnecessarily depending on comptimeOnly being resolved for some
types.
* LLVM backend: remove duplicate code for setting linkage and value
name. The canonical place for this is in `updateDeclExports`.
* LLVM backend: do some assembly template massaging to make `%%`
rendered as `%`. More hacks will be needed to make inline assembly
catch up with stage1.
This uses a new ZIR inst `array_init_sent` (and a ref equivalent) to
represent array init expressions that terminate in a a sentinel value.
The sentienl value is the last value in the `MultiOp` payload. This
makes it a bit more awkward to deal with (lots of "len - 1") but makes
it so that the payload matches the fact that sentinels appear at the end
of arrays. However, this is not a hill I want to die on so if we want to
change it to index 0, I'm happy to do so.
This makes the following work properly:
try expect(@TypeOf([_:0]u8{}) == [0:0]u8);
The ZIR instruction `union_init_ptr` is renamed to `union_init`.
I made it always use by-value semantics for now, not taking the time to
invest in result location semantics, in case we decide to change the
rules for unions. This way is much simpler.
There is a new AIR instruction: union_init. This is for a comptime known
tag, runtime-known field value.
vector_init is renamed to aggregate_init, which solves a TODO comment.