* There is now a main_pkg in addition to root_pkg. They are usually the
same. When using `zig test`, main_pkg is the user's source file and
root_pkg has the test runner.
* scanDecl no longer looks for test decls outside the package being
tested. honoring `--test-filter` is still TODO.
* test runner main function has a void return value rather than
`anyerror!void`
* Sema is improved to generate better AIR for for loops on slices.
* Sema: fix incorrect capacity calculation in zirBoolBr
* Sema: add compile errors for trying to use slice fields as an lvalue.
* Sema: fix type coercion for error unions
* Sema: fix analyzeVarRef generating garbage AIR
* C codegen: fix renderValue for error unions with 0 bit payload
* C codegen: implement function pointer calls
* CLI: fix usage text
Adds 4 new AIR instructions:
* slice_len, slice_ptr: to get the ptr and len fields of a slice.
* slice_elem_val, ptr_slice_elem_val: to get the element value of
a slice, and a pointer to a slice.
AstGen gains a new functionality:
* One of the unused flags of struct decls is now used to indicate
structs that are known to have non-zero size based on the AST alone.
When using `build-exe` or `build-lib -dynamic`, `-fcompiler-rt` means building
compiler-rt into a static library and then linking it into the executable.
When using `build-lib`, `-fcompiler-rt` means building compiler-rt into an
object file and then adding it into the static archive.
Before this commit, when using `build-obj`, zig would build compiler-rt
into an object file, and then on ELF, use `lld -r` to merge it into the
main object file. Other linker backends of LLD do not support `-r` to
merge objects, so this failed with error messages for those targets.
Now, `-fcompiler-rt` when used with `build-obj` acts as if the user puts
`_ = @import("compiler_rt");` inside their root source file. The symbols
of compiler-rt go into the same compilation unit as the root source file.
This is hooked up for stage1 only for now. Once stage2 is capable of
building compiler-rt, it should be hooked up there as well.
* Added doc comments for `std.Target.ObjectFormat` enum
* `std.Target.oFileExt` is removed because it is incorrect for Plan-9
targets. Instead, use `std.Target.ObjectFormat.fileExt` and pass a
CPU architecture.
* Added `Compilation.Directory.joinZ` for when a null byte is desired.
* Improvements to `Compilation.create` logic for computing `use_llvm`
and reporting errors in contradictory flags. `-femit-llvm-ir` and
`-femit-llvm-bc` will now imply `-fLLVM`.
* Fix compilation when passing `.bc` files on the command line.
* Improvements to the stage2 LLVM backend:
- cleaned up error messages and error reporting. Properly bubble up
some errors rather than dumping to stderr; others turn into panics.
- properly call ZigLLVMCreateTargetMachine and
ZigLLVMTargetMachineEmitToFile and implement calculation of the
respective parameters (cpu features, code model, abi name, lto,
tsan, etc).
- LLVM module verification only runs in debug builds of the compiler
- use LLVMDumpModule rather than printToString because in the case
that we incorrectly pass a null pointer to LLVM it may crash during
dumping the module and having it partially printed is helpful in
this case.
- support -femit-asm, -fno-emit-bin, -femit-llvm-ir, -femit-llvm-bc
- Support LLVM backend when used with Mach-O and WASM linkers.
The motivation for this commit is that there exists source files which
produce ast-check errors, but crash stage1 or otherwise trigger stage1
bugs. Previously to this commit, Zig would run AstGen, collect the
compile errors, run stage1, report stage1 compile errors and exit if
any, and then report AstGen compile errors.
The main change in this commit is to report AstGen errors prior to
invoking stage1, and in fact if any AstGen errors occur, do not invoke
stage1 at all.
This caused most of the compile error tests to fail due to things such
as unused local variables and mismatched stage1/stage2 error messages.
It was taking a long time to update the test cases one-by-one, so I
took this opportunity to unify the stage1 and stage2 testing harness,
specifically with regards to compile errors. In this way we can start
keeping track of which tests pass for 1, 2, or both.
`zig build test-compile-errors` no longer works; it is now integrated
into `zig build test-stage2`.
This is one step closer to executing compile error tests in parallel; in
fact the ThreadPool object is already in scope.
There are some cases where the stage1 compile errors were actually
better; those are left failing in this commit, to be addressed in a
follow-up commit.
Other changes in this commit:
* build.zig: improve support for -Dstage1 used with the test step.
* AstGen: minor cosmetic changes to error messages.
* stage2: add -fstage1 and -fno-stage1 flags. This now allows one to
download a binary of the zig compiler and use the llvm backend of
self-hosted. This was also needed for hooking up the test harness.
However, I realized that stage1 calls exit() and also has memory
leaks, so had to complicate the test harness by not using this flag
after all and instead invoking as a child process.
- These CLI flags will disappear once we start shipping the
self-hosted compiler as the main compiler. Until then, they can be
used to try out the work-in-progress stage2.
* stage2: select the LLVM backend by default for release modes, as long
as the target architecture is supported by LLVM.
* test harness: support setting the optimize mode
* stage1 backend allows configuring the uwtables function attr
via a flag rather than its own logic.
* stage2 defaults to enabling uwtable attr when
linking libunwind, or always on windows
* stage2 makes link_eh_frame_hdr true automatically if uwtable
attr is set to be on for zig functions
* CLI: add -funwind-tables and -fno-unwind-tables to allow the user to
override the defaults.
* hook it up to `zig cc`
closes#9046
closes#9034
These options were listed under the
"Debug Options (Zig Compiler Development)" heading. Anything in this
section should be considered unstable and can be modified at any time
at any developer's discretion.
* Extracts AstGen logic from ir.cpp into astgen.cpp. Reduces the
largest file of stage1 from 33,551 lines to 25,510.
* tokenizer: rework it completely to match the stage2 tokenizer logic.
They can now be maintained together; when one is changed, the other
can be changed in the same way.
- Each token now takes up 13 bytes instead of 64 bytes. The tokenizer
does not parse char literals, string literals, integer literals,
etc into meaningful data. Instead, that happens during parsing or
astgen.
- no longer store line offsets. Error messages scan source
files to find the line/column as needed (same as stage2).
- main loop: instead of checking the loop, handle a null byte
explicitly in the switch statements. This is a nice improvement
that we may want to backport to stage2.
- delete some dead tokens, artifacts of past syntax that no longer
exists.
* Parser: fix a TODO by parsing builtin functions as tokens rather than
`@` as a separate token. This is how stage2 does it.
* Remove some debugging infrastructure. These will need to be redone,
if at all, as the code migrates to match stage2.
- remove the ast_render code.
- remove the IR debugging stuff
- remove teh token printing code
The CLI gains -flto and -fno-lto options to override the default.
However, the cool thing about this is that the defaults are great! In
general when you use build-exe in release mode, Zig will enable LTO if
it would work and it would help.
zig cc supports detecting and honoring the -flto and -fno-lto flags as
well. The linkWithLld functions are improved to all be the same with
regards to copying the artifact instead of trying to pass single objects
through LLD with -r. There is possibly a future improvement here as
well; see the respective TODOs.
stage1 is updated to support outputting LLVM bitcode instead of machine
code when lto is enabled. This allows LLVM to optimize across the Zig and
C/C++ code boundary.
closes#2845
* CLI: change to -mred-zone and -mno-red-zone to match gcc/clang.
* build.zig: remove the double negative and make it an optional bool.
This follows precedent from other flags, allowing the compiler CLI to
be the decider of what is default instead of duplicating the default
value into the build system code.
* Compilation: make it an optional `want_red_zone` instead of a
`no_red_zone` bool. The default is decided by a call to
`target_util.hasRedZone`.
* When creating a Clang command line, put -mred-zone on the command
line if we are forcing it to be enabled.
* Update update_clang_options.zig with respect to the recent {s}/{} format changes.
* `zig cc` integration with red zone preference.
We generally get away with atomic primitives, however a lock is required
around the refresh function since it traverses the Node graph, and we
need to be sure no references to Nodes remain after end() is called.
The main idea here is that there are now 2 ways to get a stage1 zig
binary:
* The cmake path. Requirements: cmake, system C++ compiler, system
LLVM, LLD, Clang libraries, compiled by the system C++ compiler.
* The zig path. Requirements: a zig installation, system LLVM, LLD,
Clang libraries, compiled by the zig installation.
Note that the former can be used to now take the latter path.
Removed config.h.in and config.zig.in. The build.zig script no longer is
coupled to the cmake script.
cmake no longer tries to determine the zig version. A build with cmake
will yield a stage1 zig binary that reports 0.0.0+zig0. This is going to
get reverted.
`zig build` now accepts `-Dstage1` which will build the stage1 compiler,
and put the stage2 backend behind a feature flag.
build.zig is simplified to only support the use case of enabling LLVM
support when the LLVM, LLD, and Clang libraries were built by zig. This
part is probably sadly going to have to get reverted to make package
maintainers happy.
Zig build system addBuildOption supports a couple new types.
The biggest reason to make this change is that the zig path is an
attractive option for doing compiler development work on Windows. It
allows people to work on the compiler without having MSVC installed,
using only a .zip file that contains Zig + LLVM/LLD/Clang libraries.
* std.log: still print error messages in ReleaseSmall builds.
- when start code gets an error code from main, it uses std.log.err
to report the error. this resulted in a test failure because
ReleaseSmall wasn't printing `error: TheErrorCode` when an error
was returned from main. But that seems like it should keep working.
So I changed the std.log defaults. I plan to follow this up with a
proposal to change the names of and reduce the quantity of the
log levels.
* warning emitted when using -femit-h when using stage1 backend; fatal
log message when using -femit-h with self-hosted backend (because the
feature is not yet available)
* fix double `test-cli` build steps in zig's build.zig
* update docgen to use new CLI
* translate-c uses `-x c` and generates a temporary basename with a
`.h` extension. Otherwise clang reports an error.
* --show-builtin implies -fno-emit-bin
* restore the compile error for using an extern "c" function without
putting -lc on the build line. we have to know about the libc
dependency up front.
* Fix ReleaseFast and ReleaseSmall getting swapped when passing the
value to the stage1 backend.
* correct the zig0 CLI usage text.
* update test harness code to the new CLI.
These CLI options are now forwarded to the stage1 backend.
We're not going to support the -mllvm CLI option any longer. As a
compromise, we unconditionally tell LLVM to output intel x86 syntax when
using -femit-asm.
Simplify stage1 logic; it no longer has the concept of an output
directory. --output-dir is no longer a valid CLI option. cmake uses
the `-femit-bin=[path]` option.
Note the changes to test/cli.zig. This breaks the CLI API that Godbolt
is using so we're going to want to open a PR to help them upgrade to the
new CLI for the upcoming Zig 0.7.0 release.
As part of this:
* add std.process.cleanExit. closes#6395
- use it in several places
* adjust the alignment of text in `zig build --help` menu
* Cache: support the concept of "unhit" so that we properly keep track
of the cache when we find out using the secondary hash that the cache
"hit" was actually a miss. Use this to fix false negatives of caching
of stage1 build artifacts.
* fix not deleting the symlink hash for stage1 build artifacts causing
false positives.
* implement support for Package arguments in stage1 build artifacts
* update and add missing usage text
* add --override-lib-dir and --enable-cache CLI options
- `--enable-cache` takes the place of `--cache on`
* CLI supports -femit-bin=foo combined with --enable-cache to do an
"update file" operation. --enable-cache without that argument
will build the output into a cache directory and then print the path
to stdout (matching master branch behavior).
* errors surfacing from main() now print "error: Foo" instead of
"error: error.Foo".