86 Commits

Author SHA1 Message Date
Andrew Kelley
756a2dbf1a compiler: upgrade various std.io API usage 2025-07-07 22:43:52 -07:00
Andrew Kelley
941bc37193 compiler: update all instances of std.fmt.Formatter 2025-07-07 22:43:52 -07:00
Jacob Young
917640810e Target: pass and use locals by pointer instead of by value
This struct is larger than 256 bytes and code that copies it
consistently shows up in profiles of the compiler.
2025-06-19 11:45:06 -04:00
Jacob Young
b483defc5a Legalize: implement scalarization of binary operations 2025-05-31 18:54:28 -04:00
Jacob Young
8bacf3e757 x86_64: implement integer @reduce(.Max) 2025-05-28 15:10:22 -04:00
Jacob Young
3fd3358f37 x86_64: implement integer @reduce(.Min) 2025-05-28 15:10:22 -04:00
Jacob Young
a4a1ebdeed x86_64: implement optimized float @reduce(.Mul) 2025-05-28 15:10:22 -04:00
Jacob Young
d69f4c48fc x86_64: rewrite bitwise @reduce 2025-05-28 15:10:22 -04:00
Jacob Young
a3b0c242b0 x86_64: rewrite @splat 2025-05-17 18:00:17 -04:00
Jacob Young
6d68a494c8 x86_64: rewrite vector +| 2025-05-17 02:08:41 -04:00
Alex Rønne Petersen
ed9aa8f259 compiler: Move int size/alignment functions to std.Target and std.zig.target.
This allows using them in e.g. compiler-rt.
2025-04-11 05:22:00 -04:00
Alex Rønne Petersen
0132be7bf3 std.Target: Rename charSignedness() to cCharSignedness().
To be consistent with the other functions that answer C ABI questions.
2025-04-11 05:22:00 -04:00
Jacob Young
c5c1c8538d x86_64: rewrite wrapping multiplication 2025-03-21 21:51:08 -04:00
Andrew Kelley
eb3c7f5706 zig build fmt 2025-02-22 17:09:20 -08:00
Jacob Young
8d078f1ba2 cbe: fix incomplete array element types
Can't imagine this working, but might as well try until I remember why.

Closes #21439
2025-02-10 17:21:32 -08:00
Jacob Young
b9531f5de6 x86_64: rewrite float vector conversions 2025-01-31 23:00:34 -05:00
Jacob Young
c7433212d1 x86_64: rewrite scalar and vector int @min and @max 2025-01-24 21:02:32 -05:00
Jacob Young
b1fa89439a x86_64: rewrite float vector @abs and equality comparisons 2025-01-24 20:56:11 -05:00
mlugg
0ec6b2dd88 compiler: simplify generic functions, fix issues with inline calls
The original motivation here was to fix regressions caused by #22414.
However, while working on this, I ended up discussing a language
simplification with Andrew, which changes things a little from how they
worked before #22414.

The main user-facing change here is that any reference to a prior
function parameter, even if potentially comptime-known at the usage
site or even not analyzed, now makes a function generic. This applies
even if the parameter being referenced is not a `comptime` parameter,
since it could still be populated when performing an inline call. This
is a breaking language change.

The detection of this is done in AstGen; when evaluating a parameter
type or return type, we track whether it referenced any prior parameter,
and if so, we mark this type as being "generic" in ZIR. This will cause
Sema to not evaluate it until the time of instantiation or inline call.

A lovely consequence of this from an implementation perspective is that
it eliminates the need for most of the "generic poison" system. In
particular, `error.GenericPoison` is now completely unnecessary, because
we identify generic expressions earlier in the pipeline; this simplifies
the compiler and avoids redundant work. This also entirely eliminates
the concept of the "generic poison value". The only remnant of this
system is the "generic poison type" (`Type.generic_poison` and
`InternPool.Index.generic_poison_type`). This type is used in two
places:

* During semantic analysis, to represent an unknown result type.
* When storing generic function types, to represent a generic parameter/return type.

It's possible that these use cases should instead use `.none`, but I
leave that investigation to a future adventurer.

One last thing. Prior to #22414, inline calls were a little inefficient,
because they re-evaluated even non-generic parameter types whenever they
were called. Changing this behavior is what ultimately led to #22538.
Well, because the new logic will mark a type expression as generic if
there is any change its resolved type could differ in an inline call,
this redundant work is unnecessary! So, this is another way in which the
new design reduces redundant work and complexity.

Resolves: #22494
Resolves: #22532
Resolves: #22538
2025-01-21 02:41:42 +00:00
Jacob Young
b9c4400776 x86_64: implement fallback for pcmpeqq 2025-01-16 20:42:08 -05:00
mlugg
d00e05f186
all: update to std.builtin.Type.Pointer.Size field renames
This was done by regex substitution with `sed`. I then manually went
over the entire diff and fixed any incorrect changes.

This diff also changes a lot of `callconv(.C)` to `callconv(.c)`, since
my regex happened to also trigger here. I opted to leave these changes
in, since they *are* a correct migration, even if they're not the one I
was trying to do!
2025-01-16 12:46:29 +00:00
mlugg
d11bbde5f9
compiler: remove anonymous struct types, unify all tuples
This commit reworks how anonymous struct literals and tuples work.

Previously, an untyped anonymous struct literal
(e.g. `const x = .{ .a = 123 }`) was given an "anonymous struct type",
which is a special kind of struct which coerces using structural
equivalence. This mechanism was a holdover from before we used
RLS / result types as the primary mechanism of type inference. This
commit changes the language so that the type assigned here is a "normal"
struct type. It uses a form of equivalence based on the AST node and the
type's structure, much like a reified (`@Type`) type.

Additionally, tuples have been simplified. The distinction between
"simple" and "complex" tuple types is eliminated. All tuples, even those
explicitly declared using `struct { ... }` syntax, use structural
equivalence, and do not undergo staged type resolution. Tuples are very
restricted: they cannot have non-`auto` layouts, cannot have aligned
fields, and cannot have default values with the exception of `comptime`
fields. Tuples currently do not have optimized layout, but this can be
changed in the future.

This change simplifies the language, and fixes some problematic
coercions through pointers which led to unintuitive behavior.

Resolves: #16865
2024-10-31 20:42:53 +00:00
mlugg
0fe3fd01dd
std: update std.builtin.Type fields to follow naming conventions
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.

This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
2024-08-28 08:39:59 +01:00
David Rubin
b4bb64ce78
sema: rework type resolution to use Zcu when possible 2024-08-25 15:16:42 -07:00
mlugg
de49a9a173
Zir: add instructions to fetch std.builtin types
This replaces the constant `Zir.Inst.Ref` tags (and the analagous tags
in `Air.Inst.Ref`, `InternPool.Index`) referring to types in
`std.builtin` with a ZIR instruction `extended(builtin_type(...))` which
instructs Sema to fetch such a type, effectively as if it were a
shorthand for the ZIR for `@import("std").builtin.xyz`.

Previously, this was achieved through constant tags in `Ref`. The
analagous `InternPool` indices began as `simple_type` values, and were
later rewritten to the correct type information. This system was kind of
brittle, and more importantly, isn't compatible with incremental
compilation of std, since incremental compilation relies on the ability
to recreate types at different indices when they change. Replacing the
old system with this instruction slightly increases the size of ZIR, but
it simplifies logic and allows incremental compilation to work correctly
on the standard library.

This shouldn't have a significant impact on ZIR size or compiler
performance, but I will take measurements in the PR to confirm this.
2024-08-18 18:10:59 +01:00
Linus Groh
4ef956ef14 std.Target: Rename c_type_* functions to camel case
From https://ziglang.org/documentation/master/#Names:

> If `x` is otherwise callable, then `x` should be `camelCase`.
2024-08-12 00:36:51 +01:00
mlugg
548a087faf
compiler: split Decl into Nav and Cau
The type `Zcu.Decl` in the compiler is problematic: over time it has
gained many responsibilities. Every source declaration, container type,
generic instantiation, and `@extern` has a `Decl`. The functions of
these `Decl`s are in some cases entirely disjoint.

After careful analysis, I determined that the two main responsibilities
of `Decl` are as follows:
* A `Decl` acts as the "subject" of semantic analysis at comptime. A
  single unit of analysis is either a runtime function body, or a
  `Decl`. It registers incremental dependencies, tracks analysis errors,
  etc.
* A `Decl` acts as a "global variable": a pointer to it is consistent,
  and it may be lowered to a specific symbol by the codegen backend.

This commit eliminates `Decl` and introduces new types to model these
responsibilities: `Cau` (Comptime Analysis Unit) and `Nav` (Named
Addressable Value).

Every source declaration, and every container type requiring resolution
(so *not* including `opaque`), has a `Cau`. For a source declaration,
this `Cau` performs the resolution of its value. (When #131 is
implemented, it is unsolved whether type and value resolution will share
a `Cau` or have two distinct `Cau`s.) For a type, this `Cau` is the
context in which type resolution occurs.

Every non-`comptime` source declaration, every generic instantiation,
and every distinct `extern` has a `Nav`. These are sent to codegen/link:
the backends by definition do not care about `Cau`s.

This commit has some minor technically-breaking changes surrounding
`usingnamespace`. I don't think they'll impact anyone, since the changes
are fixes around semantics which were previously inconsistent (the
behavior changed depending on hashmap iteration order!).

Aside from that, this changeset has no significant user-facing changes.
Instead, it is an internal refactor which makes it easier to correctly
model the responsibilities of different objects, particularly regarding
incremental compilation. The performance impact should be negligible,
but I will take measurements before merging this work into `master`.

Co-authored-by: Jacob Young <jacobly0@users.noreply.github.com>
Co-authored-by: Jakub Konka <kubkon@jakubkonka.com>
2024-08-11 07:29:41 +01:00
Jacob Young
a1053e8e1d InternPool: add and use a mutate mutex for each list
This allows the mutate mutex to only be locked during actual grows,
which are rare. For the lists that didn't previously have a mutex, this
change has little effect since grows are rare and there is zero
contention on a mutex that is only ever locked by one thread.  This
change allows `extra` to be mutated without racing with a grow.
2024-07-13 04:47:38 -04:00
Jacob Young
525f341f33 Zcu: introduce PerThread and pass to all the functions 2024-07-07 22:59:52 -04:00
mlugg
2f0f1efa6f
compiler: type.zig -> Type.zig 2024-07-04 21:01:42 +01:00
Andrew Kelley
0fcd59eada rename src/Module.zig to src/Zcu.zig
This patch is a pure rename plus only changing the file path in
`@import` sites, so it is expected to not create version control
conflicts, even when rebasing.
2024-06-22 22:59:56 -04:00
mlugg
07a24bec9a
compiler: move LazySrcLoc out of std
This is in preparation for some upcoming changes to how we represent
source locations in the compiler. The bulk of the change here is dealing
with the removal of `src()` methods from `Zir` types.
2024-06-15 00:57:52 +01:00
Andrew Kelley
b7799ef322 std.Target.maxIntAlignment: move to compiler implementation
This should not be a public API, and the x86 backend does not support
the value 16.
2024-05-08 19:37:29 -07:00
mlugg
db890dbae7 InternPool: eliminate var_args_param_type
This was a "fake" type used to handle C varargs parameters, much like
generic poison. In fact, it is treated identically to generic poison in
all cases other than one (the final coercion of a call argument), which
is trivially special-cased. Thus, it makes sense to remove this special
tag and instead use `generic_poison_type` in its place. This fixes
several bugs in Sema related to missing handling of this tag.

Resolves: #19781
2024-05-04 22:03:56 +01:00
Jacob Young
5d745d94fb x86_64: fix C abi for unions
Closes #19721
2024-04-22 15:24:29 -07:00
Jacob Young
f1c0f42cdd cbe: fix optional codegen
Also reduce ctype pool string memory usage, remove self assignments, and
enable more warnings.
2024-04-13 01:35:20 -04:00
Jacob Young
7611d90ba0 InternPool: remove slice from byte aggregate keys
This deletes a ton of lookups and avoids many UAF bugs.

Closes #19485
2024-04-08 13:24:08 -04:00
Jacob Young
fb192df4f2 cbe: fix uncovered bugs 2024-03-30 20:50:48 -04:00
Jacob Young
5a41704f7e cbe: rewrite CType
Closes #14904
2024-03-30 20:50:48 -04:00
Jacob Young
6f10b11658 cbe: fix bugs revealed by an upcoming commit
Closes #18023
2024-03-30 20:50:48 -04:00
Tristan Ross
099f3c4039
std.builtin: make container layout fields lowercase 2024-03-11 07:09:07 -07:00
mlugg
975b859377
InternPool: create specialized functions for loading namespace types
Namespace types (`struct`, `enum`, `union`, `opaque`) do not use
structural equality - equivalence is based on their Decl index (and soon
will change to AST node + captures). However, we previously stored all
other information in the corresponding `InternPool.Key` anyway. For
logical consistency, it makes sense to have the key only be the true key
(that is, the Decl index) and to load all other data through another
function. This introduces those functions, by the name of
`loadStructType` etc. It's a big diff, but most of it is no-brainer
changes.

In future, it might be nice to eliminate a bunch of the loaded state in
favour of accessor functions on the `LoadedXyzType` types (like how we
have `LoadedUnionType.size()`), but that can be explored at a later
date.
2024-03-06 21:26:37 +00:00
Meghan Denny
2549de80b2 move Module.Decl.Index and Module.Namespace.Index to InternPool 2023-11-26 02:24:40 -05:00
Techatrix
18608223ef convert toType and toValue to Type.fromInterned and Value.fromInterned 2023-11-25 04:09:53 -05:00
Andrew Kelley
81b5df347a compiler: fix structFieldName crash for tuples
When struct types have no field names, the names are implicitly
understood to be strings corresponding to the field indexes in
declaration order. It used to be the case that a NullTerminatedString
would be stored for each field in this case, however, now, callers must
handle the possibility that there are no names stored at all. This
commit introduces `legacyStructFieldName`, a function to fake the
previous behavior. Probably something better could be done by reworking
all the callsites of this function.
2023-09-21 17:29:34 -07:00
Andrew Kelley
accd5701c2 compiler: move struct types into InternPool proper
Structs were previously using `SegmentedList` to be given indexes, but
were not actually backed by the InternPool arrays.

After this, the only remaining uses of `SegmentedList` in the compiler
are `Module.Decl` and `Module.Namespace`. Once those last two are
migrated to become backed by InternPool arrays as well, we can introduce
state serialization via writing these arrays to disk all at once.

Unfortunately there are a lot of source code locations that touch the
struct type API, so this commit is still work-in-progress. Once I get it
compiling and passing the test suite, I can provide some interesting
data points such as how it affected the InternPool memory size and
performance comparison against master branch.

I also couldn't resist migrating over a bunch of alignment API over to
use the log2 Alignment type rather than a mismash of u32 and u64 byte
units with 0 meaning something implicitly different and special at every
location. Turns out you can do all the math you need directly on the
log2 representation of alignments.
2023-09-21 14:48:40 -07:00
Andrew Kelley
ada0010471 compiler: move unions into InternPool
There are a couple concepts here worth understanding:

Key.UnionType - This type is available *before* resolving the union's
fields. The enum tag type, number of fields, and field names, field
types, and field alignments are not available with this.

InternPool.UnionType - This one can be obtained from the above type with
`InternPool.loadUnionType` which asserts that the union's enum tag type
has been resolved. This one has all the information available.

Additionally:

* ZIR: Turn an unused bit into `any_aligned_fields` flag to help
  semantic analysis know whether a union has explicit alignment on any
  fields (usually not).
* Sema: delete `resolveTypeRequiresComptime` which had the same type
  signature and near-duplicate logic to `typeRequiresComptime`.
  - Make opaque types not report comptime-only (this was inconsistent
    between the two implementations of this function).
* Implement accepted proposal #12556 which is a breaking change.
2023-08-22 13:54:14 -07:00
Andrew Kelley
db33ee45b7 rework generic function calls
Abridged summary:

 * Move `Module.Fn` into `InternPool`.
 * Delete a lot of confusing and problematic `Sema` logic related to
   generic function calls.

This commit removes `Module.Fn` and replaces it with two new
`InternPool.Tag` values:

 * `func_decl` - corresponding to a function declared in the source
   code. This one contains line/column numbers, zir_body_inst, etc.

 * `func_instance` - one for each monomorphization of a generic
   function. Contains a reference to the `func_decl` from whence the
   instantiation came, along with the `comptime` parameter values (or
   types in the case of `anytype`)

Since `InternPool` provides deduplication on these values, these fields
are now deleted from `Module`:

 * `monomorphed_func_keys`
 * `monomorphed_funcs`
 * `align_stack_fns`

Instead of these, Sema logic for generic function instantiation now
unconditionally evaluates the function prototype expression for every
generic callsite. This is technically required in order for type
coercions to work. The previous code had some dubious, probably wrong
hacks to make things work, such as `hashUncoerced`. I'm not 100% sure
how we were able to eliminate that function and still pass all the
behavior tests, but I'm pretty sure things were still broken without
doing type coercion for every generic function call argument.

After the function prototype is evaluated, it produces a deduplicated
`func_instance` `InternPool.Index` which can then be used for the
generic function call.

Some other nice things made by this simplification are the removal of
`comptime_args_fn_inst` and `preallocated_new_func` from `Sema`, and the
messy logic associated with them.

I have not yet been able to measure the perf of this against master
branch. On one hand, it reduces memory usage and pointer chasing of the
most heavily used `InternPool` Tag - function bodies - but on the other
hand, it does evaluate function prototype expressions more than before.
We will soon find out.
2023-07-18 19:02:05 -07:00
Eric Joldasov
0a868dacdd std.cstr: deprecate namespace
Signed-off-by: Eric Joldasov <bratishkaerik@getgoogleoff.me>
2023-06-25 14:51:03 -07:00
mlugg
f26dda2117 all: migrate code to new cast builtin syntax
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:

* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
2023-06-24 16:56:39 -07:00