- factor out `loadReg`
- support all general system control registers in inline asm
- fix asserts after iterating field offsets
- fix typo in `slice_elem_val`
- fix translation of argument locations
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
Also remove `@frameSize`, closing #3654.
While the other machinery might remain depending on #23446, it is
settled that there will not be `async`/ `await` keywords in the
language.
The overflow check for safe signed subtraction was using the formula (rhs < 0) == (lhs > result). This logic is flawed and incorrectly reports an overflow when the right-hand side is zero.
For the expression 42 - 0, this check evaluated to (0 < 0) == (42 > 42), which is false == false, resulting in true. This caused the generated SPIR-V to incorrectly branch to an OpUnreachable instruction, preventing the result from being stored.
Fixes#24281.
This safety check was completely broken; it triggered unchecked illegal
behavior *in order to implement the safety check*. You definitely can't
do that! Instead, we must explicitly check the boundaries. This is a
tiny bit fiddly, because we need to make sure we do floating-point
rounding in the correct direction, and also handle the fact that the
operation truncates so the boundary works differently for min vs max.
Instead of implementing this safety check in Sema, there are now
dedicated AIR instructions for safety-checked intfromfloat (two
instructions; which one is used depends on the float mode). Currently,
no backend directly implements them; instead, a `Legalize.Feature` is
added which expands the safety check, and this feature is enabled for
all backends we currently test, including the LLVM backend.
The `u0` case is still handled in Sema, because Sema needs to check for
that anyway due to the comptime-known result. The old safety check here
was also completely broken and has therefore been rewritten. In that
case, we just check for 'abs(input) < 1.0'.
I've added a bunch of test coverage for the boundary cases of
`@intFromFloat`, both for successes (in `test/behavior/cast.zig`) and
failures (in `test/cases/safety/`).
Resolves: #24161
Unfortunately, the self-hosted SPIR-V backend is quite tightly coupled
with the self-hosted SPIR-V linker through its `Object` concept (which
is much like `llvm.Object`). Reworking this would be too much work for
this branch. So, for now, I have introduced a special case (similar to
the LLVM backend's special case) to the codegen logic when using this
backend. We will want to delete this special case at some point, but it
need not block this work.
The idea here is that instead of the linker calling into codegen,
instead codegen should run before we touch the linker, and after MIR is
produced, it is sent to the linker. Aside from simplifying the call
graph (by preventing N linkers from each calling into M codegen
backends!), this has the huge benefit that it is possible to
parallellize codegen separately from linking. The threading model can
look like this:
* 1 semantic analysis thread, which generates AIR
* N codegen threads, which process AIR into MIR
* 1 linker thread, which emits MIR to the binary
The codegen threads are also responsible for `Air.Legalize` and
`Air.Liveness`; it's more efficient to do this work here instead of
blocking the main thread for this trivially parallel task.
I have repurposed the `Zcu.Feature.separate_thread` backend feature to
indicate support for this 1:N:1 threading pattern. This commit makes the
C backend support this feature, since it was relatively easy to divorce
from `link.C`: it just required eliminating some shared buffers. Other
backends don't currently support this feature. In fact, they don't even
compile -- the next few commits will fix them back up.
Similar to the previous commit, this commit untangles LLD integration
from the self-hosted linkers. Despite the big network of functions which
were involved, it turns out what was going on here is quite simple. The
LLD linking logic is actually very self-contained; it requires a few
flags from the `link.File.OpenOptions`, but that's really about it. We
don't need any of the mutable state on `Elf`/`Coff`/`Wasm`, for
instance. There was some legacy code trying to handle support for using
self-hosted codegen with LLD, but that's not a supported use case, so
I've just stripped it out.
For now, I've just pasted the logic for linking the 3 targets we
currently support using LLD for into this new linker implementation,
`link.Lld`; however, it's almost certainly possible to combine some of
the logic and simplify this file a bit. But to be honest, it's not
actually that bad right now.
This commit ends up eliminating the distinction between `flush` and
`flushZcu` (formerly `flushModule`) in linkers, where the latter
previously meant something along the lines of "flush, but if you're
going to be linking with LLD, just flush the ZCU object file, don't
actually link"?. The distinction here doesn't seem like it was properly
defined, and most linkers seem to treat them as essentially identical
anyway. Regardless, all calls to `flushZcu` are gone now, so it's
deleted -- one `flush` to rule them all!
The end result of this commit and the preceding one is that LLVM and LLD
fit into the pipeline much more sanely:
* If we're using LLVM for the ZCU, that state is on `zcu.llvm_object`
* If we're using LLD to link, then the `link.File` is a `link.Lld`
* Calls to "ZCU link functions" (e.g. `updateNav`) lower to calls to the
LLVM object if it's available, or otherwise to the `link.File` if it's
available (neither is available under `-fno-emit-bin`)
* After everything is done, linking is finalized by calling `flush` on
the `link.File`; for `link.Lld` this invokes LLD, for other linkers it
flushes self-hosted linker state
There's one messy thing remaining, and that's how self-hosted function
codegen in a ZCU works; right now, we process AIR with a call sequence
something like this:
* `link.doTask`
* `Zcu.PerThread.linkerUpdateFunc`
* `link.File.updateFunc`
* `link.Elf.updateFunc`
* `link.Elf.ZigObject.updateFunc`
* `codegen.generateFunction`
* `arch.x86_64.CodeGen.generate`
So, we start in the linker, take a scenic detour through `Zcu`, go back
to the linker, into its implementation, and then... right back out, into
code which is generic over the linker implementation, and then dispatch
on the *backend* instead! Of course, within `arch.x86_64.CodeGen`, there
are some more places which switch on the `link` implementation being
used. This is all pretty silly... so it shall be my next target.
The main goal of this commit is to make it easier to decouple codegen
from the linkers by being able to do LLVM codegen without going through
the `link.File`; however, this ended up being a nice refactor anyway.
Previously, every linker stored an optional `llvm.Object`, which was
populated when using LLVM for the ZCU *and* linking an output binary;
and `Zcu` also stored an optional `llvm.Object`, which was used only
when we needed LLVM for the ZCU (e.g. for `-femit-llvm-bc`) but were not
emitting a binary.
This situation was incredibly silly. It meant there were N+1 places the
LLVM object might be instead of just 1, and it meant that every linker
had to start a bunch of methods by checking for an LLVM object, and just
dispatching to the corresponding method on *it* instead if it was not
`null`.
Instead, we now always store the LLVM object on the `Zcu` -- which makes
sense, because it corresponds to the object emitted by, well, the Zig
Compilation Unit! The linkers now mostly don't make reference to LLVM.
`Compilation` makes sure to emit the LLVM object if necessary before
calling `flush`, so it is ready for the linker. Also, all of the
`link.File` methods which act on the ZCU -- like `updateNav` -- now
check for the LLVM object in `link.zig` instead of in every single
individual linker implementation. Notably, the change to LLVM emit
improves this rather ludicrous call chain in the `-fllvm -flld` case:
* Compilation.flush
* link.File.flush
* link.Elf.flush
* link.Elf.linkWithLLD
* link.Elf.flushModule
* link.emitLlvmObject
* Compilation.emitLlvmObject
* llvm.Object.emit
Replacing it with this one:
* Compilation.flush
* llvm.Object.emit
...although we do currently still end up in `link.Elf.linkWithLLD` to do
the actual linking. The logic for invoking LLD should probably also be
unified at least somewhat; I haven't done that in this commit.