Notating a symbol to be exported in code will only tell the linker
where to find this symbol, so other object files can find it. However, this does not mean
said symbol will also be exported to the host environment. Currently, we 'fix' this by force
exporting every single symbol that is visible. This creates bigger binaries and means host environments
have access to symbols that they perhaps shouldn't have. Now, users can tell Zig which symbols
are to be exported, meaning all other symbols that are not specified will not be exported.
Another change is we now support `-rdynamic` in the wasm linker as well, meaning all symbols will
be put in the dynamic symbol table. This is the same behavior as with ELF. This means there's a 3rd strategy
users will have to build their wasm binary.
This way, we will inform the user that there are unresolved symbols
in addition to missing library/framework as requested on the linker
line. If all symbols were resolved on the other hand, we still
flag up that the library/framework cannot be found.
Example behaviour:
```
$ zig cc hello.c -framework MyFoundation --verbose
warning(link): framework not found for '-framework MyFoundation'
warning(link): Framework search paths:
warning(link): /Library/Frameworks
warning(link): /Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/System/Library/Frameworks
thread 1079397 panic: attempt to unwrap error: FrameworkNotFound
...stack trace...
```
and
```
❯ zig cc hello.c -lWAT --verbose
warning(link): library not found for '-lWAT'
warning(link): Library search paths:
warning(link): /Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/lib
warning(link): /usr/local/lib
thread 1079824 panic: attempt to unwrap error: LibraryNotFound
...stack trace...
```
We now respect both `-fallow-shlib-undefined` and
`-Wl,"-undefined=dynamic_lookup"` flags. This is the first step
towards solving issues #8180 and #3000. We currently do not expose
any other ld64 equivalent flag for `-undefined` flag - we basically
throw an error should the user specify a different flag. Support for
those is conditional on closing #8180. As a result of this change,
it is now possible to generate a valid native Node.js addon with Zig
for macOS.
- Correctly load slice value on stack
- Implement WrapErrorUnionErr and payload
- Implement trunc, fix sliceLen and write undefined
- Implement slice as return type and argument
Note: This also fixes a memory leak for inferred error sets, and for usingnamespace
This reverts commit 725267f7c20f0ba588b472048a8c1fe1a328c714, reversing
changes made to 2dae860de3494f97c9477af9282fe0131ff5c4cb.
This test is failing:
```zig
pub fn main() u8 {
var e = foo();
const i = e catch 69;
return i;
}
fn foo() anyerror!u8 {
return 5;
}
```
It's returning 69 instead of the expected value 5.
If a symbol is undefined after we tried resolving it in static and
dynamic libraries, and it is annotated with N_DESC_DISCARDED flag,
we simply ignore it rather than flagging an undefined symbol error.
If `r_extern == 0` (the relocation is non-extern, meaning it targets
a specific memory offset within the object's section) and if the
relocation type signifies that the relocation requires correction
for RIP such as SIGNED_1, then we need to subtract the correction,
here 1 for SIGNED_1, from the calculated addend value as it's
implicitly included.
- This implements the required codegen for decl types such as pointers, arrays, structs and more.
- Wasm's start function can now use both a 'u8' and 'void' as return type. This will help us with writing tests
using the stage2 testing backend. (Until all tests of behavioural tests pass).
- Now correctly generates relocations for function pointers.
- Also implements unwrapping error union error, as well as return pointers.
The function table contains all function pointers that are called
by using call_indirect. During codegen, we create a relocation
where the linker will resolve the correct index into the table and stores
this value within the data section at the location of the pointer.
This contains a few additions:
- Proper stack pointer calculation keeping alignment in mind.
- Setting up memory layout (including user flags).
- Export or import memory
- Handle 'easy' linker tasks during incremental compilation, while offloading
heavy-tracking/computation tasks to `flush()`
- This architecture allows us to easily integrate with the rest of 'zwld' to
implement linking stage2 code with external object files.
We now resolve relocations for globals, memory addresses and function indexes.
Besides above, we now also emit imported functions correctly and create a
corresponding undefined symbol for it, where as we create a defined symbol
for all other cases.
TODO: Make incrememental compilation work again with new linker infrastructure
- Converts previous `DeclBlock` into `Atom`'s to also make them compatible when
the rest of zlwd gets upstreamed and we can link with other object files.
- Resolves function signatures and removes any duplicates, saving us a lot of
potential bytes for larger projects.
- We now create symbols for each decl of the respective type
- We can now (but not implemented yet) perform proper relocations.
- Having symbols and segment_info allows us to create an object file
for wasm.
Since we are already detecting the path to the native SDK,
if available, also fetch SDK's version and route that to the linker.
The linker can then use it to correctly populate LC_BUILD_VERSION
load command.
Due to a deficiency in LLD, we need to special-case BPF to a simple
file copy when generating relocatables. Normally, we would expect
`lld -r` to work. However, because LLD wants to resolve BPF relocations
which it shouldn't, it fails before even generating the relocatable.
Co-authored-by: Matthew Knight <mattnite@protonmail.com>
In 7e23b3245a9bf6e002009e6c18c10a9995671afa I made -O flags to the
linker emit a warning that the argument does nothing. That was not
correct however; LLD does have some logic that does different things
depending on -O0, -O1, and -O2. It defaults to -O1, and it does less
optimizations with -O0 and more with -O2.
With this commit, e.g. `-Wl,-O1` is supported by the `zig cc` frontend,
and by default we pass `-O0` to LLD in debug mode, and `-O3` in release
modes.
I also fixed a bug in the LLD ELF linker line which was incorrectly
passing `-O` flags instead of `--lto-O` flags for LTO.
* Improve the logic for determining whether emitting an import lib is
eligible, and improve the error message when the user provides
contradictory arguments.
* Integrate with the EmitLoc / Emit system that already exists, and use
the `-femit-implib[=path]`/`-fno-emit-implib` convention that already
exists.
* Proper integration with the caching system.
* CLI: fix bug in error reporting for resolving EmitLoc values for
other parameters.
This mechanism for sending arbitrary linker args to LLD has no place in
the Zig frontend, because our goal is for the frontend to understand all
the arguments and not treat linker args like a black box.
For example we have self-hosted linking in addition to LLD, so we want to
have the options make sense to both linking codepaths, not just the LLD one.
Passing -O linker args will now result in a warning that the arg does
nothing.