This commit changes the type of the second parameter to `anytype`, which should make it easier to pass literals to these functions. This change shouldn't *silently* break existing code (the assertions themselves should retain the same behavior as before) but it may result in some new compile errors when struct/union/array literals or builtins like `@bitCast` are used for the second argument. These compile errors can be fixed by explicitly coercing these expressions to the correct type using `@as`.
Current implementation fails to handle the following enum
```zig
const E = enum {
X,
pub const X = 1;
}
```
because `@field(type, name)` prefers declarations over enum fields.
This isn't technically needed since per-module -I args can suffice, but
this can produce very long CLI invocations when several --mod args are
combined with --search-prefix args since the -I args have to be repeated
for each module.
This is a partial revert of ecbe8bbf2df2ed4d473efbc32e0b6d7091fba76f.
This issue already existed in master branch, however, the more
aggressive caching of builtin.zig in this branch made it happen more
often. I added doc comments to AtomicFile to explain when this problem
can occur.
For the compiler's use case, error.AccessDenied can be simply swallowed
because it means the destination file already exists and there is
nothing else to do besides proceed with the AtomicFile cleanup.
I never solved the mystery of why the log statements weren't printing
but those are temporary debugging instruments anyway, and I am already
too many yaks deep to whip out another razor.
closes#14978
Much of the logic from Compilation.create() is extracted into
Compilation.Config.resolve() which accepts many optional settings and
produces concrete settings. This separate step is needed by API users of
Compilation so that they can pass the resolved global settings to the
Module creation function, which itself needs to resolve per-Module
settings.
Since the target and other things are no longer global settings, I did
not want them stored in link.File (in the `options` field). That options
field was already a kludge; those options should be resolved into
concrete settings. This commit also starts to work on that, deleting
link.Options, moving the fields into Compilation and
ObjectFormat-specific structs instead. Some fields were ephemeral and
should not have been stored at all, such as symbol_size_hint.
The link.File object of Compilation is now a `?*link.File` and `null`
when -fno-emit-bin is passed. It is now arena-allocated along with
Compilation itself, avoiding some messy cleanup code that was there
before.
On the command line, it is now possible to configure the standard
library itself by using `--mod std` just like any other module. This
meant that the CLI needed to create the standard library module rather
than having Compilation create it.
There are a lot of changes in this commit and it's still not done. I
didn't realize how quickly this changeset was going to balloon out of
control, and there are still many lines that need to be changed before
it even compiles successfully.
* introduce std.Build.Cache.HashHelper.oneShot
* add error_tracing to std.Build.Module
* extract build.zig file generation into src/Builtin.zig
* each CSourceFile and RcSourceFile now has a Module owner, which
determines some of the C compiler flags.
This change is seemingly insignificant but I actually agonized over this
for three days. Some other things I considered:
* (status quo in master branch) make Compile step creation functions
accept a Target.Query and delete the ResolvedTarget struct.
- downside: redundantly resolve target queries many times
* same as before but additionally add a hash map to cache target query
resolutions.
- downside: now there is a hash map that doesn't actually need to
exist, just to make the API more ergonomic.
* add is_native_os and is_native_abi fields to std.Target and use it
directly as the result of resolving a target query.
- downside: they really don't belong there. They would be available
as comptime booleans via `@import("builtin")` but they should not
be exposed that way.
With this change the downsides are:
* the option name of addExecutable and friends is `target` instead of
`resolved_target` matching the type name.
- upside: this does not break compatibility with existing build
scripts
* you likely end up seeing `target.result.cpu.arch` rather than
`target.cpu.arch`.
- upside: this is an improvement over `target.target.cpu.arch` which
it was before this commit.
- downside: `b.host.target` is now `b.host.result`.
Introduce the concept of "target query" and "resolved target". A target
query is what the user specifies, with some things left to default. A
resolved target has the default things discovered and populated.
In the future, std.zig.CrossTarget will be rename to std.Target.Query.
Introduces `std.Build.resolveTargetQuery` to get from one to the other.
The concept of `main_mod_path` is gone, no longer supported. You have to
put the root source file at the module root now.
* remove deprecated API
* update build.zig for the breaking API changes in this branch
* move std.Build.Step.Compile.BuildId to std.zig.BuildId
* add more options to std.Build.ExecutableOptions, std.Build.ObjectOptions,
std.Build.SharedLibraryOptions, std.Build.StaticLibraryOptions, and
std.Build.TestOptions.
* remove `std.Build.constructCMacro`. There is no use for this API.
* deprecate `std.Build.Step.Compile.defineCMacro`. Instead,
`std.Build.Module.addCMacro` is provided.
- remove `std.Build.Step.Compile.defineCMacroRaw`.
* deprecate `std.Build.Step.Compile.linkFrameworkNeeded`
- use `std.Build.Module.linkFramework`
* deprecate `std.Build.Step.Compile.linkFrameworkWeak`
- use `std.Build.Module.linkFramework`
* move more logic into `std.Build.Module`
* allow `target` and `optimize` to be `null` when creating a Module.
Along with other fields, those unspecified options will be inherited
from parent `Module` when inserted into an import table.
* the `target` field of `addExecutable` is now required. pass `b.host`
to get the host target.
This moves many settings from `std.Build.Step.Compile` and into
`std.Build.Module`, and then makes them transitive.
In other words, it adds support for exposing Zig modules in packages,
which are configured in various ways, such as depending on other link
objects, include paths, or even a different optimization mode.
Now, transitive dependencies will be included in the compilation, so you
can, for example, make a Zig module depend on some C source code, and
expose that Zig module in a package.
Currently, the compiler frontend autogenerates only one
`@import("builtin")` module for the entire compilation, however, a
future enhancement will be to make it honor the differences in modules,
so that modules can be compiled with different optimization modes, code
model, valgrind integration, or even target CPU feature set.
closes#14719
This reverts commit 7161ed79c4abcaccdd56fe0b4fbd3d93472d41b8, reversing
changes made to 3f2a65594e1d3c0a4f4943a4ea522e8405db81e0.
Unfortunately, this sat in the PR queue too long and the merge broke the
zig1.wasm bootstrap process.
The function returns the vector length, not the byte size of the vector or the bit size of individual elements. This distinction is very important and some usages of this function in the stdlib operated under these incorrect assumptions.