The compiler now provides a server protocol for an interactive session
with another process. The build runner uses this protocol to communicate
compilation errors semantically from zig compiler subprocesses to the
build runner.
The protocol is exposed via stdin/stdout, or on a network socket,
depending on whether the CLI flag `--listen=-` or e.g.
`--listen=127.0.0.1:1337` is used.
Additionally:
* add the zig version string to the build runner cache prefix
* remove --prominent-compile-errors CLI flag because it no longer does
anything. Compilation errors are now unconditionally displayed at the
bottom of the build summary output when using the terminal-based
build runner.
* Remove the color field from std.Build. The build steps are no longer
supposed to interact with stderr directly. Instead they communicate
semantically back to the build runner, which has its own logic about
TTY configuration.
* Use the cleanExit() pattern in the build runner.
* Build steps can now use error.MakeFailed when they have already
properly reported an error, or they can fail with any other error
code in which case the build runner will create a simple message
based on this error code.
With this commit, the build runner now communicates progress towards
completion of the step graph to the terminal, while also printing the
stderr of child processes as soon as possible, without clobbering each
other, and without clobbering the CLI progress output.
Instead of dumping directly to stderr. This prevents processes running
simultaneously from racing their stderr against each other.
For now it only reports at the end, but an improvement would be to
report as soon as a failed step occurs.
After sorting the step stack so that dependencies can be popped before
their dependants are popped, there is still a situation left to handle
correctly:
Example:
A depends on:
B
C
D depends on:
E
F
They will be ordered like this:
A B C D E F
If there are 6+ cores, then all of them will be evaluated at once,
incorrectly evaluating A and D before their dependencies.
Starting evaluation of F and then E is correct, but waiting until they
are done is not correct because it should start working on B and C as
well.
This commit solves the problem by computing dependants in the dependency
loop checking logic, and then having workers queue up their dependants
when they finish their own work.
This makes it so that when there is a tree of std.Build objects, only
one zig-cache is used (the top-level application) instead of polluting
package directories with zig-cache folders.
* Use std.Build.Cache.Directory instead of a string for storing the
cache roots and build roots.
* Set up a std.Build.Cache in build_runner.zig and use it in
std.Build.RunStep for avoiding redundant work.
This function is needed when a library exposes one of its own library
dependency's headers as part of its own public API.
Also, improve error message when a file system error occurs during
install file step.
The `zig build` command now makes `@import("@dependencies")` available
to the build runner package. It contains all the dependencies in a
generated file that looks something like this:
```zig
pub const imports = struct {
pub const foo = @import("foo");
pub const @"bar.baz" = @import("bar.baz");
};
pub const build_root = struct {
pub const foo = "<path>";
pub const @"bar.baz" = "<path>";
};
```
The build runner exports this import so that `std.build.Builder` can
access it. `std.build.Builder` uses it to implement the new `dependency`
function which can be used like so:
```zig
const libz_dep = b.dependency("libz", .{});
const libmp3lame_dep = b.dependency("libmp3lame", .{});
// ...
lib.linkLibrary(libz_dep.artifact("z"));
lib.linkLibrary(libmp3lame_dep.artifact("mp3lame"));
```
The `dependency` function calls the build.zig file of the dependency as
a child Builder, and then can be ransacked for its build steps via the
`artifact` function.
This commit also renames `dependency.id` to `dependency.name` in the
`build.zig.ini` file.
stage2: change logic for detecting whether the main package is inside
the std package. Previously it relied on realpath() which is not portable.
This uses resolve() which is how imports already work.
* stage2: fix cleanup bug when creating Module
* flatten lib/std/special/* to lib/*
- this was motivated by making main_pkg_is_inside_std false for
compiler_rt & friends.
* rename "mini libc" to "universal libc"