This does however not support floats of bitsizes
different than 32 or 64. f16, f80, f126 will require
support for compiler-rt and are out-of-scope for this commit.
Signed integers are currently not supported either.
llvm: dump failed module when -femit-llvm-ir set
print_air:
* print fully qualified name
* use Type.fmt and Value.fmtValue, fmtDebug is useless
TypedValue
* handle anon structs and tuples
* fix bugs
This comptime gate is needed to make sure that purely single-threaded
programs don't generate calls to the std.Thread API.
WASI targets successfully build again with this change.
The function `writeDbgInfoNopsBuffered` was based on the function
`pwriteDbgInfoNops`, originally written by me, and then modified to
write to a memory buffer instead of an open file. When writing to a
file, any extra bytes beyond the end of the file extend the size of
the file, and the function body of `pwriteDbgInfoNops` takes advantage
of this when `next_padding_bytes` causes the write to go beyond the
end of the file. However, when writing to a memory buffer, the
underlying array list must be expanded if the write would cause the
buffer to expand.
Note that the current documentation for the `-z noexecstack` is
incorrect. This indicates that an object *does not* require an
executable stack.
This is actually the default of LLD, and there has never been a way to
override this default by passing `-z execstack` to LLD.
This commit removes the redundant `-z noexecstack` option from
zig build-exe/build-lib/build-obj and ignores the option if passed
to zig cc for compatibility.
As far as I can tell, there is no reason for code to require an
executable stack. This option only exists because the stack was
originally executable by default and some programs came to depend
on that behavior. Instead, mprotect(2) may be used to make memory
pages executable.
I'm not really happy with parsing compile errors; I think we should just
be checking that the expected compile error matches the actual rendered
version. I will save that change for a later date however.
And use it to debug a LazySrcLoc in stage2 that is set to a bogus value.
The actual fix in this commit is:
```diff
- try sema.emitBackwardBranch(&child_block, call_src);
+ try sema.emitBackwardBranch(block, call_src);
```
Whenever a `ref` instruction is needed, it is created and saved in
`AstGen.ref_table` instead of being immediately appended to the current
block body. Then, when the referenced instruction is being added to the
parent block (e.g. from setBlockBody), if it has a ref_table entry, then
the ref instruction is added directly after the instruction being referenced.
This makes sure two properties are upheld:
1. All pointers to the same locals return the same address. This is required
to be compliant with the language specification.
2. `ref` instructions will dominate their uses. This is a required property
of ZIR.
A complication arises when a ref instruction refs another ref
instruction. The logic in appendBodyWithFixups must take this into
account, recursively handling ref refs.
Full RELRO is a hardening feature that makes it impossible to perform
certian attacks involving overwriting parts of the Global Offset Table
to invoke arbitrary code.
It requires all symbols to be resolved before execution of the program
starts which may have an impact on startup time. However most if
not all popular Linux distributions enable full RELRO by default for
all binaries and this does not seem to make a noticeable difference
in practice.
"Partial RELRO" is equivalent to `-z relro -z lazy`.
"Full RELRO" is equivalent to `-z relro -z now`.
LLD defaults to `-z relro -z lazy`, which means Zig's current `-z relro`
option has no effect on LLD's behavior.
The changes made by this commit are as follows:
- Document that `-z relro` is the default and add `-z norelro`.
- Pass `-z now` to LLD by default to enable full RELRO by default.
- Add `-z lazy` to disable passing `-z now`.
Zig allows multiple extern functions with the same name, and the
backends have to handle this possibility.
For LLVM, we keep a sparse map of collisions, and then resolve them in
flushModule(). This introduces some technical debt that will have to be
resolved when adding incremental compilation support to the LLVM
backend.